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• Electrostatics: 

Unit – I 

Chapter – 1: Electric field intensity and potential 

The study of electric forces and electric fields that are produced by electric charges 

which are at rest is called electrostatics. 

 
❖ Electric charge: 

Charge is the property associated with matter due to which it produces and 

experiences electric and magnetic effects. Every atom is electrically neutral, containing 

equal no of electrons in orbits and protons in the nucleus. Charged particles can be 

created by disturbing the neutrality of an atom. Loss of electrons gives positive charge 

and gain of electrons gives negative charge to a particle. 

Properties of electric charge: 

1. Charge is a scalar quantity. 

2. There are two types of charges i.e., positive charge and negative charge. 

3. Like charges (positive – positive or negative – negative) repel each other while  

unlike charges (positive – negative) attract each other. 

4. Charge is conserved: charge can neither be created and nor be destroyed. It can only 

be transferred from one point to another point. 

5. Charge is quantized: The smallest charge that can exist in nature is the charge of the 

electron (𝑒 = 1.6 × 10−19𝐶). The charge on any body is the integral multiple of 𝑒, 

i.e.,  𝑄 = ±𝑛𝑒 with  𝑛 = 1, 2, 3, … .  The  charge  on  any  body  can  never  be 

±17.2𝑒,… 

± 
2 
𝑒 , 

3 

6. Charge is additive in nature: Total charge on a body is the algebraic sum of all the 

charges located anywhere on the body. 

Example: If a body has the charges 2C, - 5C, 4C, 6C, etc., then the total charge on 

the body is 2 – 5 + 4 + 6 = 7C. While adding the charges their sign must be taken  

into consideration. 

 
❖  Coulomb’s law: 

Coulomb’s law states that “the force of attraction or repulsion between two 

stationary point charges is directly proportional to the product of the two charges and 

inversely proportional to the square of the distance between them”. 

If 𝑞1 and 𝑞2 be two point charges separated from each other by a distance 𝑟 in vacuum 

or air) then the force 𝐹 acting between them is given by 
𝐹 ∝ 𝑞 𝑞  and 𝐹 ∝ 

1
 

 

1   2 𝑟 2 

𝐹 ∝
 𝑞1 𝑞2 

𝑟 2 

Where 𝜀0 is the permittivity of free space. 
1 

 

4𝜋𝜀0 
= 9 × 109𝑁𝑚2 /𝐶2 and 𝜀0 = 8.85 × 10−12𝐶2 /𝑁𝑚2 
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 Coulomb’s law in medium: 

If instead of vacuum (or air) some medium (glass, paper, wax, oil etc.,) is placed between 

the charges, then the force 𝐹 acting between them is given by 
1 

𝐹 = 
4𝜋𝜀0𝑘 

𝑞1𝑞2 

𝑟2 

Where 𝑘 = dielectric constant of the medium. 
∴ 𝐹 =

 1 𝑞1 𝑞2 ∵ 𝜀 = 𝜀 𝑘 
𝑚𝑒𝑑 4𝜋𝜀 𝑟 2 0 

Limitations of Coulomb’s law: 

Coulomb’s law fails to explain the stability of the nucleus. The reason being that the 

nucleus consists of several protons all having positive charge and according to Coulomb’s 

law they should repel each other. But we know that the nucleus has a stable identity. So 

the Coulomb’s law fails. 

 
• Electric field: 

The region surrounding an electric charge or a group of charges, in which another 

charge experiences a force is called electric field. 

❖ Intensity of electric field or electric field strength 𝑬 : 

The intensity of electric field at a point in the field is defined as the force experienced 

by a unit positive charge placed at that point. 

Let 𝐹 be the force experienced by a test charge 𝑞0 placed at a point in the field, then 

the intensity of electric field 𝐸 at that point is given by 

𝐸 = 
𝐹 
 
𝑞0 

Units: Newton/Coulomb or N/C 

From the above equation, 𝐹 = 𝐸 𝑞0 

𝐸 is a vector quantity whose direction is in the direction of 𝐹 . 

If a unit positive charge 𝑞0(1𝐶) is placed at a distance 𝑟 from the point charge, then from 

Coulomb’s law, the force on unit positive charge is given by 

𝐹 =
 1 𝑞1 𝑞0 

=
 1 𝑞1 ×1 

4𝜋𝜀0 

𝐹 
= 

1 

𝑟 2 

𝑞1 

4𝜋𝜀0 𝑟 2 

1 4𝜋𝜀0 𝑟 2 

𝐸 = 
𝐹 

 
𝑞0 

= 
𝐹 

1 
 

 
 

❖ Continuous charge distributions: A system of closely spaced electric charges forms a 

continuous charge distribution. 

Linear charge distribution Surface charge distribution Volume charge distribution 

In this distribution, charge 

is distributed on a line. 
 

Example: charge on a 

wire, charge on a ring. 

In this distribution, charge 

is distributed on the 

surface. 

Example: charge on a 

conducting sphere, charge 

In this distribution, charge is 

distributed in the whole 

volume of the body. 

Example: Solid uniformly 

charged object say a 
 

 

𝐸 = 
1 𝑞 

4𝜋𝜀0 𝑟2 
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The linear charge density 
Charge 

𝜆 = 
Length 

on a sheet. 
The surface charge density 

Charge 
𝜍 = 

Area 

charged sphere. 
The volume charge density 

Charge 
𝜌 = 

Volume 

 
❖ Electric flux: 

The no of lines of force passing through an area element which is making an angle 

with the direction of electric field is called electric flux Φ𝐸. 

The scalar product, i.e., 𝑬 ∙ 𝒅 𝑺 is defined as the electric flux for the surface. 
 

 

 
Consider a closed surface of area A in an electric field. Let the surface be divided into 

a no of elementary squares each of area 𝑑 𝑆 . If 𝐸 is the electric field acting on 𝑑 𝑆 then the 

flux through 𝑑 𝑆 is 

𝑑Φ𝐸 = 𝐸 ∙ 𝑑 𝑆  

The total flux through the entire surface is given by 

Φ𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 cos 𝜃 Φ𝐸 = 𝐸 

cos 𝜃 𝑑𝑆 

Φ𝐸 = 𝐸 cos 𝜃 𝐴 

(∵ 𝑑𝑆 = 𝐴 = area of the surface) 

Φ𝐸 = 𝐸𝐴 cos 𝜃 

The flux Φ𝐸 of the electric field is measured by the number of electric lines of force that 

cut the surface. 

Note: area elements 

1. Φ𝐸 = +𝑣𝑒, If the lines of force point outward everywhere (Out flux) 
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2. Φ𝐸 = 0, If the lines of force are perpendicular to the area 

3. Φ𝐸 = −𝑣𝑒, If the lines of force point inward everywhere (influx) 

Example: Electric flux through cylinder. 

Consider a cylinder of radius 𝑅 immersed in a uniform electric field 𝐸 parallel to its 

surface as shown in figure. 

 

The flux through the entire cylinder is the sum of the fluxes through (a) left face (b) right 

face and (c) the cylindrical surface. Thus 

Φ𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 ∙ 𝑑 𝑆  
 

 
(𝑎) 

+ 𝐸 ∙ 𝑑 𝑆  
 

 
(𝑏) 

+ 𝐸 ∙ 𝑑 𝑆  
 

 
(𝑐) 

For the left face, the angle between 𝐸 and 𝑑 𝑆 is 1800 

∴ 𝐸 ∙ 𝑑 𝑆 = 𝐸𝑑𝑆 cos 1800 = −𝐸 𝑑𝑆 = −𝐸𝑆 where 𝑆 = 𝜋𝑅2 
(𝑎) 

For the right face, the angle between 𝐸 and 𝑑 𝑆 is 00 

∴ 𝐸 ∙ 𝑑 𝑆 = 𝐸𝑑𝑆 cos 00 = 𝐸 𝑑𝑆 = +𝐸𝑆 
(𝑏) 

For the curved surface of the cylinder, the angle between 𝐸 and 𝑑 𝑆 is 900 

𝐸 ∙ 𝑑 𝑆 = 𝐸𝑑𝑆 cos 900 = 0 
(𝑐) 

Φ𝐸 = −𝐸𝑆 + 𝐸𝑆 + 0 

Thus the flux through the entire cylinder is zero. 

 
❖  Gauss’s law: 

Statement: Gauss’s law states that total normal electric flux 𝜙𝐸 over a closed surface is   

1 𝜖0 times the total charge 𝑄 enclosed within the surface. It is expressed mathematically 

as 
1 

𝜙𝐸 = 𝑬 ∙ 𝒅𝑺 = 𝐸 ∙ 𝑑𝑠 cos 𝜃 = 
𝜖
   𝑄𝑒𝑛𝑐 

where 𝜖0 is the permittivity of free space. 
 

 

 

 

 

 

 
 

0 



   

1 

Unit – I 5 

Chapter – 1: Electric Field intensity and Potential 
 

Proof: 

(i) when the charge is within the surface 

Let a charge 𝑄 is placed at 𝑂 within a closed surface 

of irregular shape. Consider a point 𝑃 on the surface at a 

distance 𝑟 from 𝑂 . Now take a small area element 𝑑𝑆 

around 𝑃. Let 𝑑 𝑆 be normal vector of area element 𝑑𝑆 

making an angle 𝜃 with the direction of electric field 

along 𝑂𝑃. 

The electric flux 𝑑𝜙𝐸 outwards through the area 𝑑𝑆 is 

given by 

𝑑𝜙𝐸 = 𝑬 ∙ 𝒅𝑺 = 𝐸𝑑𝑆 cos 𝜃 ....................................... (1) 

𝜃 is the angle between 𝑬 and 𝒅𝑺 

From Coulomb’s law, the electric intensity 𝐸 at a distance 

𝑟 from a point charge 𝑄 is given by 𝐸 = 
1 𝑄 

….. (2) 

From (1) and (2), 𝑑𝜙  = 
1
 

4𝜋𝜖0 𝑟 2 
𝑄 𝑑𝑆 cos 𝜃 = 

𝑄
 𝑑𝑆 cos 𝜃

 
 

 

𝐸 4𝜋𝜖0 𝑟 2 
 

4𝜋𝜖0 𝑟 2 

But 𝑑𝑆 cos 𝜃 is the solid angle 𝑑𝜔 subtended by 𝑑𝑆 at 𝑂. 
𝑟 2 

𝑑𝜙
𝐸 

=  
𝑄 

4𝜋𝜖0 
𝑑𝜔 ……….. (3) 

The total flux 𝜙𝐸 over the entire closed surface is given by 𝜙𝐸 = 
𝑄 4𝜋𝜖0 

  𝑑𝜔 

𝜙
𝐸 

=  
𝑄 

4𝜋𝜖0 
× 4𝜋 (∵ 𝑑𝜔 is the angle subtended by the whole surface at 𝑂. This is equal 

to 4𝜋) 

…………. (4) 
 

Note: When the closed surface encloses several charges like +𝑄1, +𝑄2, +𝑄3,…… −𝑄′ , 
−𝑄′ , −𝑄′ ,…. 

2 3 

The total flux is given by 
𝜙 = 

1
  +𝑄 + 𝑄 + 𝑄 … … − 𝑄′ − 𝑄′ − 𝑄′ …   

𝐸 𝜖0
 1 2 3 1 2 3 

= 
1 

𝜖0 
  𝑄, where 𝑄 is the algebraic sum of all charges. 

(ii) when the charge is outside the surface 

Let a point charge +𝑄 be placed at point 𝑂 outside the closed surface as shown in fig. 

Now a cone of solid angle 𝑑𝜔 from 𝑂 cuts the surfaces 𝑑𝑆1, 𝑑𝑆2, 𝑑𝑆3, 𝑑𝑆4 at P, Q, R 

and S respectively. 
 

 

𝜙𝐸 = 
𝑄𝑒𝑛𝑐 

𝜖 0 



   

𝜌 
∇ ∙ 𝑬 = 

𝜖0 
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The electric flux for an outward normal is positive and for inward normal is negative. 

Therefore, the flux through areas 𝑑𝑆2 and 𝑑𝑆4 are positive while for 𝑑𝑆1 and 𝑑𝑆3 are 

negative. 

The electric flux at P through area 𝑑𝑆1 

The electric flux at Q through area 𝑑𝑆2 

   𝑄  
  𝑑𝜔 

4𝜋𝜖0 

   𝑄  
  𝑑𝜔 

4𝜋𝜖0 

The electric flux at R through area 𝑑𝑆3 = − 
𝑄 

4𝜋𝜖0   𝑑𝜔 

The electric flux at S through area 𝑑𝑆4 = + 
𝑄 

4𝜋𝜖0   𝑑𝜔 

∴ Total electric flux = − 
𝑄

 

4𝜋𝜖0 
𝑑𝜔 + 

𝑄 

4𝜋𝜖0 
𝑑𝜔 − 

𝑄 

4𝜋𝜖0 
𝑑𝜔 + 

𝑄 

4𝜋𝜖0 
𝑑𝜔 = 0 

So the total electric flux over a closed surface due to an external charge is zero. This 

verifies Gauss’s law. 

 
❖  Differential form of Gauss’s law: 

According to Gauss’s law,   𝑬 ∙ 𝒅𝑺 = 𝑄 𝜖0 or 𝜖0 𝑬 ∙ 𝒅𝑺 = 𝑄 ……… (1) 

Let a charge be distributed uniformly over a volume 𝑉 and 𝜌 be the charge density. Then 

𝑄 =      𝜌 𝑑𝑉 ………… (2) 

∴ 𝜖0   𝑬 ∙ 𝒅𝑺 =    𝜌 𝑑𝑉 ………… (3) 

Apply Gauss divergence theorem to convert surface integral to volume integral   

i.e.,  𝑠 𝑬 ∙ 𝒅𝑺 =     𝑉𝑑𝑖𝑣 𝑬 𝑑𝑉 ...................... (4) 

from (3) and (4), we get 𝜖0    𝑉𝑑𝑖𝑣 𝑬 𝑑𝑉 =    𝜌 𝑑𝑉 ..................... (5) 

equating on both sides 𝜖0𝑑𝑖𝑣 𝑬 = 𝜌 

𝑑𝑖𝑣 𝑬 = 
𝜌

 

𝜖0 

or ∇ ∙ 𝑬 = 
𝜌

 

𝜖0 

 
 

 

 

 

………… (6) 

 

Eq. (6) is the differential form of Gauss’s law. 

 
❖ Electric field due to a uniformly charged sphere: 

Case (i): At a point outside the charged sphere (𝑟 

> 𝑅): 

Consider a sphere A of radius R with center O as 

shown in fig. Let 𝑞 be a charge uniformly distributed 

over the sphere. Let P be a point outside the charged 

sphere which is at a distance 𝑟 from the centre O of 

the sphere. 

To find the electric field at P, construct a Gaussian 

surface of radius OP concentric with sphere A. The 

electric field at all points on the Gaussian surface is 

equal in magnitude and perpendicular to the surface. 

 

 

 

= − 

= + 



   

4 3 
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Let 𝑑 𝑆 be a small area element of this surface and 𝑑𝜙𝐸 is the flux passing through this 

element. 

Therefore, 𝑑𝜙𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 cos 00 = 𝐸 𝑑𝑆 (∵ angle between 𝐸 and 𝑑 𝑆 is zero) 

The electric flux through the entire Gaussian surface is given by 

𝜙𝐸 =   𝐸 ∙ 𝑑 𝑆 = 𝐸  𝑑𝑆 = 𝐸 4𝜋𝑟2 ……… (1) 

From Gauss’s law, 𝜙𝐸 = 𝐸 4𝜋𝑟2 = 
𝑞
 

𝜖0 

∴ 𝐸 =  
1 

4𝜋𝜖0 
× 
𝑞 

𝑟 2 ……….. (2) 

Case (ii): At a point on the surface (𝑟 = 𝑅) 

When the point P lies on the surface of the charged sphere, then 𝑟 = 𝑅. The electric 

field intensity is given by 

𝐸 = 
1
 

4𝜋𝜖0 

× 
𝑞 

𝑅2 ……….. (3) 

Case (iii): At a point inside the charged sphere (𝑟 < 𝑅) 

Consider P be a point at a distance 𝑟 from 

the centre inside the charged sphere. Let OP be 

the radius of Gaussian sphere and 𝜌 is the 

charge density (charge per unit volume). 

Now, to calculate the electric field 𝐸 at P, the 

outward flux through a small portion of 

Gaussian surface is 

𝑑𝜙𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 cos 00 = 𝐸 𝑑𝑆 (∵ angle 

between 𝐸 and 𝑑 𝑆 is zero) 

The electric flux through the entire Gaussian 

surface is given by 

𝜙𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 = 𝐸 4𝜋𝑟2  

𝜌 = 
𝑞
 

𝜋𝑅 
3 

= 
3𝑞 4𝜋𝑅3 

The total charge enclosed by   the Gaussian surface = volume enclosed by it × charge per unit 

volume 

= 
4 
𝜋𝑟3 

3 
× 𝜌 

∴ charge enclosed in Gaussian surface = 𝜋𝑟3 3 
× 

3𝑞 
= 𝑞 

𝑟
 4𝜋𝑅3 

3 
  ……….. (4) 

 From Gauss’s law, 𝜙 
𝑅 

= 𝐸 4𝜋𝑟2  = 
charge  enclosed   in Gaussian   surface 

 
 

𝑟 3 
 

 

 

∴ 𝐸 =  
1 

4𝜋𝜖0 

𝐸 

× 
𝑞𝑟 

𝑅3 

 
………… (5) 

𝜖0 
= 𝑞      

𝑅 
 𝜖0 

This expression shows that the electric field 𝐸 due to a uniformly charged sphere at an 

internal point is proportional to the distance 𝑟. 
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Graph: 

o It is obvious that the electric field 

outside the sphere is inversely 

proportional to the square of the 

distance. 

o It is maximum on the surface of the 

sphere. 

o Electric field 𝐸 due to a uniformly 

charged sphere at an internal point is 

proportional to the distance 𝑟. 

 

❖ Electric field due to hallow sphere or Electric field due to charged spherical shell: 

Case (i): At a point outside the charged sphere (𝑟 > 𝑅): 

Consider a sphere A of radius R with center O as 

shown in fig. Let 𝑞 be a charge uniformly 

distributed over the sphere. Let P be a point outside 

the charged sphere which is at a distance 𝑟 from the 

centre O of the sphere. 

To find the electric field at P, construct a Gaussian 

surface of radius OP concentric with sphere A. The 

electric field at all points on the Gaussian surface is 

equal in magnitude and perpendicular to the surface. 

Let 𝑑 𝑆 be a small area element of this surface and 

𝑑𝜙𝐸 is the flux passing through this element. 

 
Therefore, 𝑑𝜙𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 cos 00 = 𝐸 𝑑𝑆 (∵ angle between 𝐸 and 𝑑 𝑆 is zero) 

The electric flux through the entire Gaussian surface is given by 

𝜙𝐸 =   𝐸 ∙ 𝑑 𝑆 = 𝐸  𝑑𝑆 = 𝐸 4𝜋𝑟2 ……… (1) 

From Gauss’s law, 𝜙𝐸 = 𝐸 4𝜋𝑟2 = 
𝑞
 

𝜖0 

∴ 𝐸 =  
1 

4𝜋𝜖0 
× 
𝑞 

𝑟 2 ……….. (2) 

Case (ii): At a point on the surface (𝑟 = 𝑅) 

When the point P lies on the surface of the charged 

sphere, then 𝑟 = 𝑅. The electric field intensity is given by 

𝐸 = 
1
 

4𝜋𝜖0 

× 
𝑞 

𝑅2 ……….. (3) 

Case (iii): At a point inside the charged sphere (𝑟 < 𝑅) 

In case charged spherical shell the charge resides only 

on the outer surface. Hence the charge enclosed by the 

Gaussian surface is zero. 

From Gauss law, 

𝜙𝐸 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 = 𝐸 4𝜋𝑟2  

𝜙
𝐸 

= 𝐸 4𝜋𝑟2 = 
𝑞
 

𝜖0 

 

 
 

 



   

Unit – I 9 

Chapter – 1: Electric Field intensity and Potential 
 

𝐸 = 0 ∵ 𝑞 = 0  

The electric field inside the charged 

conducting sphere or shell is zero. 

Graph: 

o It is obvious that the electric field 

outside the sphere is inversely 

proportional to the square of the 

distance. 

o It is maximum on the surface of the 

sphere. 

o Electric field 𝐸 due to a charged sphere 

at an internal point is zero. 

 

❖ Electric field due to infinite sheet of charge: 

Consider a thin, non conducting, infinite sheet of charge. Let 𝜍 be the surface charge 

density (charge per unit area). Let P1 be a point at a distance 𝑟 from the sheet where the 

electric field is to be calculated. To calculate electric field, construct a Gaussian 

cylindrical surface by taking a point P2 on other side of the sheet symmetrical about P1. 

Let A be the area of cross section of cylindrical surface. 

 

The electric flux through Gaussian surface is given by 𝜙𝐸 = 𝜙𝑝𝑙𝑎𝑛𝑒 1 + 𝜙𝑐𝑢𝑟𝑣𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  + 

𝜙𝑝𝑙𝑎𝑛𝑒  2 

𝜙𝑝𝑙𝑎𝑛𝑒 1 =   𝐸   ∙  𝑑   𝑆  = 𝐸   𝑑𝑆 cos 00 = 𝐸𝐴 

𝜙𝑐𝑢𝑟𝑣𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐸 ∙ 𝑑 𝑆 = 𝐸 𝑑𝑆 cos 900 = 0 

𝜙𝑝𝑙𝑎𝑛𝑒 2 =   𝐸   ∙  𝑑   𝑆  = 0   𝑑𝑆 cos 00 = 0 

𝜙𝐸  = 𝜙𝑝𝑙𝑎𝑛𝑒  1  + 𝜙𝑐𝑢𝑟𝑣𝑒𝑑  𝑠𝑢𝑟𝑓𝑎𝑐𝑒  + 𝜙𝑝𝑙𝑎𝑛𝑒  2  = 𝐸𝐴 + 0 + 0 = 𝐸𝐴 

𝜙𝐸 = 𝐸𝐴 

According to Gauss’s law, 𝜙𝐸 = 
𝑞 

𝜖0 
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𝐸𝐴 = 
𝑞
 
𝜖0 

∴ 𝐸 = 
𝜍
 
𝜖0 

= 
𝜍𝐴 

𝜖0 

∵ 𝜍 = 
𝑞
 
𝐴 

This expression shows that the magnitude of the electric filed is independent of the 

distance from the sheet. 

 
❖ Electric potential: 

Electric potential at a point in the electric field is defined as the work done by an 

external agent in carrying a unit positive charge from infinity to that point against the 

electric force of the field. 

The SI unit of electric potential is volt. 

Explanation: 

The ratio of work done in taking a test 

charge from one point to other point in an 

electric field to the magnitude of the test 

charge is defined as the electric potential 

difference between these points. 

If 𝑊 be the work done in moving the test charge 𝑞0 from point B to point A, then the 

potential difference 𝑉𝐴 − 𝑉𝐵 between A and B is expressed as 
𝑊 

𝑉𝐴 − 𝑉𝐵 = 
𝑞
 

If point B is taken at infinity, then the electric potential 𝑉𝐵 at infinite is zero. 
𝑊 

𝑉𝐴 = 
𝑞
 

❖ Potential and Field strength: 

Let a uniform electric field 𝑬 is set up by certain 

stationary charges (not shown) as shown in fig. Let 𝑞0 

be a charge moved by an external agent between two 

points A and B without acceleration in the electric field. 

The electric force on the charge due to electric field is 

𝑞0𝑬 which points downwards. 

To move the charge upwards by external agent, an 

equal and opposite force −𝑞0𝑬 must be applied. 

Let 𝑞0 is moved through a small distance 𝑑 𝑙 

agent. 

The work done 𝑑𝑊 by the agent is 

by the 

𝑑𝑊 = 𝐹  ∙ 𝑑 𝑙 = −𝑞0𝐸  ∙ 𝑑 𝑙 

Therefore, the total work done 

……… (1) 

𝐵 𝑊 = −𝑞 𝐸 ∙ 𝑑 𝑙 = −𝑞  
𝐵 
𝐸 ∙ 𝑑 𝑙 ……… (2) 

𝐴𝐵 𝐴 0 0 𝐴 

𝑉𝐵 − 𝑉𝐴 =
 𝑊𝐴𝐵  

𝑞0 
……… (3) 

∴ Potential difference between two points A and B will be 

𝑉𝐵 − 𝑉𝐴 = − 
𝐵 
𝐸 ∙ 𝑑 𝑙 

𝐴 
…….. (4) 

 

 
 

 

0 

0 



   

𝐵 

𝑉𝐵 = − 𝐸 ∙ 𝑑 𝑙 
∞ 
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If the reference point A is taken at infinity, then VA = 0. 

Hence 

So, the electric potential at a point in the electric field can be expressed as a line integral 

of the electric field. 

 
❖ Potential due to a point charge: 

Consider a point charge +𝑞 as 

shown in fig. Its electric field is 𝑬. Let 

A, B are two points at distances 𝑟𝐴 and 

𝑟𝐵 from charge +𝑞 . To calculate the 

electric potential at point B, the charge is 

moved through a small distance 𝒅𝒓. The 

work done by external agent to move the 

charge through 𝒅𝒓 is given by 

𝑑𝑊 = 𝑞0𝐸  ∙ 𝑑  𝑟  = 𝑞0𝐸 𝑑𝑟 cos 1800 = 

−𝑞0𝐸 𝑑𝑟 

𝐸 = 
1 𝑞 

4𝜋𝜖0 𝑟 2 

∴ 𝑑𝑊 = −
 1 𝑞𝑞0 𝑑𝑟 

4𝜋𝜖0 𝑟 2 

Total work done in moving the charge from A to B is 
𝑊 = − 

𝑟𝐵 1 𝑞 𝑞0 𝑑𝑟
 

 
𝑊 = −

 𝑞 𝑞0  1 𝑟𝐵 

= 
𝑞 𝑞0

 
1 

 
  

 
− 

1 
  

 
 

𝐴𝐵 𝑟𝐴 4𝜋𝜖0 𝑟 2 

𝐴𝐵 4𝜋𝜖0 
 −    

𝑟  𝑟𝐴 
4𝜋𝜖0 

 

𝑟𝐵 𝑟𝐴 

So the potential difference between two points is 𝑉 − 𝑉 =
 𝑊𝐴𝐵  

= 
𝑞   

1 
− 

1 
  

  

Taking 𝑟𝐴 = ∞, 𝑉𝐴 = 0 

𝐵 𝐴 𝑞0 

 

4𝜋𝜖0 𝑟𝐵 𝑟𝐴 

𝑉  = 
1 𝑞 

 

𝐵 4𝜋𝜖0 𝑟𝐵 

Drop the suffix B, 

 
This expression shows that at a distance 𝑟 on all sides of the charge 𝑞, the potential is the 

same. 

 
❖ Potential due to charged spherical shell: 

Case (i): when the point P lies outside the shell 

Consider a conducting spherical shell 

with center O and radius R. The total charge on 

the sphere is 𝑞. Now we calculate potential 𝑉 at 

point 𝑃 at distance 𝑟 from the center O. The 

relation between electric field and potential is 

given by 

𝑉𝐴
𝐵 

= − 
𝐵 
𝐸 ∙ 𝑑 𝑟  
𝐴 

 
 

1 𝑞 
𝑉 = 

4𝜋𝜖0 𝑟 
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Electric field due to charged spherical shell = 
1 𝑞  

,  𝐴 = ∞, 𝐵 = 𝑟 

𝑉 𝑟  = −  
𝑟 1

 
 
𝑞 𝑑𝑟 

4𝜋𝜖0 𝑟 2 

 
 

𝑉 𝑟 = 

∞ 4𝜋𝜖0 𝑟 2 

𝑞 1 𝑟 
  

4𝜋𝜖0 𝑟 ∞ 

𝑉 = 
1 𝑞 

 

𝑜𝑢𝑡 4𝜋𝜖0 𝑟 

Case (ii): at a point on the surface of sphere (𝒓 = 𝑹) 
In this case 𝑟 = 𝑅, 𝑉 = 

1 𝑞 
 

𝑜𝑛 4𝜋𝜖0 𝑅 

Case (iii): at a point inside the sphere (𝒓 < 𝑅) 
We know that for spherical shell, 𝐸 = 

1 𝑞 
 

 
and 𝐸𝑖𝑛 = 0 

𝑜𝑢𝑡 4𝜋𝜖0 𝑟 2 

𝑉 = − 
𝑟 
𝐸 ∙ 𝑑 𝑟 = − 

𝑅 
𝐸  ∙ 𝑑 𝑟 − 

𝑟 
𝐸  ∙ 𝑑 𝑟  

𝑖𝑛 ∞ ∞ 𝑜𝑢𝑡 𝑅 𝑖𝑛 

𝑉 = − 
𝑅 
𝐸  ∙ 𝑑 𝑟 − 0 = − 

𝑅 1
 𝑞 𝑑𝑟 

𝑖𝑛 ∞ 𝑜𝑢𝑡 
 

∞ 4𝜋𝜖0 𝑟 2 

 

𝑉𝑖𝑛 
 

𝑉 

 

=  
𝑞 

4𝜋𝜖0 

= 
1 

1 𝑅 
  
𝑟 ∞ 

𝑞 

𝑖𝑛 
 

4𝜋𝜖0 𝑅 

 

Graph: 

o The potential inside the spherical 

shell is same as that on the surface. 

o The electric potential outside the 

spherical shell is inversely 

proportional to the distance. 
 

 

 

 

 

 

 
 

❖ Equipotential surfaces: 

Equipotential surface in an electric field is a surface on which the potential is same at 

every point or the locus of all points which have the same potential is called equipotential 

surface. The potential difference between any two points on the equipotential surface is 

zero, hence no work is done in taking a charge from one point to another point. This is 

possible only when the charge is taken perpendicular to the field. So, the equipotential 

surface at every point is perpendicular to the field. 
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In case of uniform field, where the lines of force are straight and parallel, the 

equipotential surfaces are planes perpendicular to the lines of force as shown in fig. The 

equipotential surfaces are a family of concentric spheres for a point charge or sphere of 

charge. 

Equipotential surfaces in electrostatics are similar to wavefronts in optics. The 

wavefronts in optics are the locus of all points which are in the same phase. These are the 

planes perpendicular to the direction of rays. On the other hand, the equipotential surfaces 

are perpendicular to the lines of force. 

 

 

 

 
❖ Important Questions: 

1. Define electric field intensity. 

2. Explain about equipotential surfaces. 

3. State and prove Gauss’s law in electrostatics 

4. Define electric field intensity. Calculate the electric field due to infinite conducting 

sheet of charge. 

5. Calculate the electric field intensity due to uniformly charged sphere at points within 

and outside sphere. 

6. Define electric potential. Derive expression for potential due to point charge. 

7. Define electric potential. Calculate the electric potential due to spherical shell. 

 
❖ Problems: 

Based on Gauss’s law: 

1. If a point charge 𝑞 is placed at the centre of a cube, what is the flux linked 

(a) with the cube 

(b) with each face of the cube? 

2. A hemispherical body is placed in a uniform electric field 𝑬. What is the flux linked 

with the curved surface, if field is (a) parallel to the base and (b) perpendicular to the 

base? 

3. A charge 𝑞 is placed at the centre of the open end of a cylindrical vessel of radius 𝑅 
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and length 𝐿. Calculate the flux through the surface of the vessel. 

 

 

 

 

 

 

4. S1 and S2 are two parallel concentric spherical surfaces enclosing charges 𝑞 and 2𝑞 

respectively as shown in figure. What is the ratio of electric flux through S1 and S2? 
 

 

 

 

 

S2 
 

 

 

Based on electric field intensity: 

5. The intensity of electric field at a point 0.25m away a point charge is 1.44 N/C. Find 

the magnitude of charge. 

6. A sphere charged to 80𝜇𝐶 is placed in air. Find the electric field intensity at a point 

20 cm from the centre of the sphere. Radius of the sphere R = 10 cm. 

 
Based on electric potential: 

7. A point charge is placed at A. The charge is 1.5 × 10-8 C. What are the radii of 

equipotential surfaces having a potential 15V and 30V . 

8. The charge on a spherical conductor is 3 × 10-9 C. Radius of the conductor is 0.1m. 

find the potential. Take 1 
4𝜋𝜀0 

= 9 × 109 N – m2/C2 

9. What is the electric potential at the surface of nucleus gold? The radius of the nucleus 

is 6.6 × 10-15m. The atomic number of gold is 79. 

10. A spherical drop of water carrying a charge of 3 × 10-6 C has a potential 500V at its 

surface. What is the radius of the drop? 

11. At distances of 5cm and 10cm from the surface of sphere, the potentials are 600V and 

420V. Find the potential of its surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

𝑞 

L 

𝑅 

2𝑞 

𝑞 
S1 
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❖ Dielectrics: 

Unit – I 

Chapter – 2: Dielectrics 

A dielectric or insulator is a material which does not contain free electrons or 

the number of such electrons is too low to constitute the electric current. In dielectrics, the 

electrons are tightly bound to the nucleus of atoms. 

The dielectric does not conduct electricity on the application of electric field, 

the electrons may be able to move to and fro about their equilibrium positions but they do 

not have the vicinity of their atoms. 

Examples: mica, glass, plastic etc. 

USES: 

1. In making high capacity condensers, paper and mica are used. 

2. Quartz. Mica, glass, paraffin etc are used for high insulation. 

3. Ii helps in maintaining two large metal plates at very small separation. 

 
❖ Electric dipole: 

The arrangement of equal and opposite charges separated by a finite distance 

is called “electric dipole”. 

Electric dipole moment: 

The product of magnitude of one charge 𝑞 and 

distance between the two charges 2𝑙 is known 

as “Electric dipole moment”. 

Electric dipole moment 𝑃 = 𝑞 × 2𝑙 = 2𝑞𝑙 

This is a vector quantity, whose direction is along the axis of the dipole pointing from 

negative to positive charges. 

 
❖ Atomic view of dielectrics: 

➢ Atoms consist of positive and  negative charges 

in equal magnitudes. 

➢ The positive charge of the nucleus supposed to 

be concentrated at a single point called the centre 

of gravity of the positive charge. 

➢ The negative charge of the electrons supposed to 

be concentrated at a single point called the centre 

of gravity of the negative charge. 

• Non – polar molecule: when the two centers of 

gravity coincide, the molecule is known as non – 

polar molecule. Non – polar molecules have 

symmetrical structure and zero electric dipole 

moment. 

Example: H2, N2, CO2, Benzene etc. 

• Polar molecule: when the two centers of gravity 

do not coincide, the molecule is called is called 
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as polar molecule. Polar molecules have unsymmetrical structure and have a 

permanent dipole moment. 

Example: H2O, HCL, CO, NH3 etc. 

❖ Non – polar dielectric (or) Polarization of dielectric: 

When a dielectric slab is place in an electric field, say between the plates of a charged 

capacitor, the centre of gravity of a positive charge is pulled towards the negative plate 

and centre of gravity of negative charged pulled towards the positive plate. 

The process of separating positive and negative charges within the dielectric when 

placed in electric field is known as dielectric polarization. 

The dielectrics which are polarized only when they are placed in an electric filed are 

called non-polar dielectrics. 
 

Fig (a) shows the random distribution of plus and minus charges in non-polar dielectric. 

 
Fig (b) shows the surface charges appear (positive charge on the surface and negative 

charge on the other surface) when dielectric placed in electric field 𝐸0. 

 
Fig (c) shows the induced surface charges appear in such a way that the electric field set 

up by them 𝐸′ opposes external filed 𝐸0. 

∴ 𝐸 = 𝐸0 − 𝐸′ 

Thus, if the dielectric is placed in an electric field, induced surface charge appear 

which tend to weaken the original field within the dielectric. 

 
❖ Polar dielectric in electric field: 

Polar dielectrics have permanent dipole moments with their random orientations as 

shown in fig (a). In the presence of an electric field, the partial alignment of dipoles takes 

place as shown in fig (b). The alignment increases with the increase of electric field or 

with the decrease of temperature. 

The dipole moment of a polar molecule in an electric field is 𝑃𝑝 + 𝑃𝑖 

𝑃𝑝 – permanent dipole moment, 𝑃𝑖 - induced dipole moment 
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Thus the non-polar molecules in an electric field become induced dipoles while polar 

molecules are re-oriented with dipole moment increased. 

 
❖ Dielectric Polarization & Charge density: 

Let a dielectric slab (glass) is placed between the parallel plates of a capacitor. Fig (a) 

shows the electronic structure of an atom when the two plates are not charged. When the 

plates are charged, an electrostatic field is established between the two plates as shown in 

fig (b). 
 

Now the electrons are attracted towards the positive plate and positively charged nucleus 

is attracted towards negative plate of the capacitor. In this way, the dielectric is slab for be 

polarised and the distorted atom is 

called “Electric dipole” and every 

electric dipole has an “Electric 

dipole moment” 

“The electric dipole moment per 

unit volume is called as dielectric 

polarisation (P)”. 

Suppose a dielectric slab of 

area of cross – section A and 

length l is placed in an electric 

field as shown in fig 2.6. Let the 

induced charges on faces ABCD and EFGH is – 𝑞′ and +𝑞′ respectively. 

The dipole moment 𝑝 = 𝑞′ × 𝑙 = 𝑞′ 𝑙 

Volume of the slab = Al 
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Dielectric polarization 𝑃 = 
𝑑𝑖𝑝𝑜𝑙𝑒  𝑚𝑜𝑚𝑒𝑛𝑡

 
𝑉𝑜𝑙𝑢𝑚𝑒 

𝑃 = 
𝑞 ′ 𝑙 

= 
𝑞 ′ 

(charge per unit area i.e., charge density) 
𝐴𝑙 𝐴 

Hence dielectric polarization is numerically equal to the surface charge density. 

 
❖ Dielectric constant & Susceptibility: 

• Dielectric constant: 

Based on Capacitance: 

The ratio of the capacitance of a condenser with dielectric to the capacitance of the same 

condenser without dielectric is defined as dielectric constant. 
𝐶 (Capacitance of a condenser with dielectric) 

𝑘 =   

𝐶0 (Capacitance of a condenser without dielectric) 

Based on potential difference: 

The potential difference 𝑉𝑑 between the plates of the capacitor filled with dielectric is 

smaller than the potential difference 𝑉0 without dielectric. 
𝑉𝑑 

 
Based on force: 

𝑘 =  
 

𝑉0 

From Coulomb’s law in free space 𝐹 =
 1 𝑞1 𝑞2 

0 4𝜋𝜀0 𝑟 2 

From Coulomb’s law in medium 𝐹 =
 1 𝑞1 𝑞2 

𝑚𝑒𝑑 4𝜋𝜀 𝑟 2 

 

𝑘 = 
𝜀
 

𝜀0 

 

and 𝑘 = 
𝐹0

 

𝐹𝑚𝑒𝑑 

𝐹𝑚𝑒𝑑 

𝐹0 

𝜀0 1 
= = 

𝜀 𝑘 

From the above expression, 

The dielectric constant is defined as the ratio of permittivity of the medium to the 

permittivity of the free space. 

The dielectric constant is defined as the ratio of force between two charges in air or 

vacuum to the force between the same charges in dielectric medium. 

The value of 𝑘 = 1 for vacuum and 𝑘 = ∞ for metals. 

 
• Susceptibility: 

When a dielectric is placed in electric filed is polarized. The polarization vector 𝑃 is 

proportional the electric filed 𝐸. 

𝑃 ∝ 𝐸 or 𝑃 = 𝜒𝐸 

Where the constant of proportionality 𝜒 is known as electric susceptibility. 

The ratio of dielectric polarization to the electric intensity is defined as electric 

susceptibility. 

𝜒 = 
𝑃

 
𝐸 

 

❖  Gauss’s law in dielectrics: 

The Gauss’s law states that the electric flux 𝛷𝐸through any closed surface is 1 𝜀0 

times the charge enclosed by the surface. 
 

 



   

 

 

 
𝛷
𝐸 

 

 
=    𝐸 ∙ 𝑑 𝑆 = 

𝑞
 

𝜀0 
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Consider a parallel plate capacitor (a) 

without and (b) with dielectric as shown in 

fig. The charge 𝑞 on the plates is same. The 

Gaussian surfaces are also shown in the 

figure. 

When no dielectric is present [fig 2.7(a)], 

then by Gauss’s law 

  𝐸 ∙ 𝑑 𝑆 = 
𝑞
 
𝜀0 

𝐸0   𝑑𝑆 = 
𝑞
 
𝜀0 

𝐸 𝐴 = 
𝑞
 

 

0 
 

𝐸0 

𝜀0 

= 
𝑞 

𝜀0 𝐴 

 
………. (1) 

When the dielectric is placed between the plates of the capacitor [fig 2.7(b)], the net 

charge within the Gaussian surface P’Q’R’S’ is 𝑞 − 𝑞′ , where 𝑞′ is the induced surface 

charge. Then by Gauss’s law 

  𝐸 ∙ 𝑑 𝑆 =
 𝑞−𝑞 ′ 

 
𝜀0 

𝐸𝐴 =
 𝑞−𝑞′  

𝜀0 

𝐸 = 
𝑞
 
𝜀0 𝐴 

− 
𝑞′ 

𝜀0 𝐴 
…….. (2) 

𝐸 is less than 𝐸0 because induced 

charges produce their own field which 

opposes the original field 
 𝐸0 

= 
𝑞 

− 
𝑞′  ∵ 𝐸 = 

𝐸0   
𝑘 𝜀0 𝐴 𝜀0 𝐴 𝑘 

Substituting the value of 𝐸0 from eq 

(1), 
𝑞 

 
 

𝜀0 𝐴𝑘 
′ 

= 
𝑞 

𝜀0 𝐴 
𝑞 

 
 

− 
𝑞′ 

𝜀0 𝐴 
1 

 
 𝑞 = 𝑞 − 

𝑘 
= 𝑞 1 − 

𝑘 

Now Gauss’s law with dielectric present can be expressed as 

  𝐸 ∙ 𝑑 𝑆 = 
𝑞
 

𝑞 1 
 1 −    

𝜀0 

  𝐸 ∙ 𝑑 𝑆 = 
𝑞
 
𝜀0 

𝜀0 

− 
𝑞 

𝜀0 

𝑘 

+ 
𝑞 

𝜀0 𝑘 
 

 

This is Gauss’s law in a dielectric. 

 
❖ Three electric vectors & their relation: 

The three electric vectors are 

1. Electric intensity 
 

 
 

𝑘 𝐸 ∙ 𝑑 𝑆 = 
𝑞
 

𝜀0 

− 



   

𝐷 = 𝜀0𝐸 + 𝑃 
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2. Dielectric polarization 

3. Electric displacement 

1. Electric intensity E: 

The electric intensity E at any point in the electric field is numerically equal to 

the force experienced by a unit positive charge placed at that point. The direction of 

E being the same as that of the field. 

2. Dielectric polarization P: 

The electric dipole moment per unit volume is called as dielectric polarization P. 

3. Electric displacement D: 

The electric displacement at a point is defined as the product of electric field strength 

E at that point and the permittivity of the medium 𝜀. 

∴ 𝑫 = 𝜀𝑬 = 𝑘𝜀0𝑬 

The unit of D is C/m2 

D is equal to the surface charge density 𝜎 of free charges 𝐷 = 
𝑞 

= 𝜎 
𝐴 

When a dielectric slab is placed between the plates of a parallel plate capacitor, the 

medium is polarised. The relation between the induced charge 𝑞′ and the charge 𝑞 on 

the plate of the capacitor is given by 
𝑞 

 
 

𝜀0 𝐴𝑘 
= 
𝑞 

𝜀0 𝐴 
− 

𝑞′ 

𝜀0 𝐴 
𝑞 

 
 

𝜀0 𝐴 
= 

𝑞 

𝜀0 𝐴𝑘 
+ 

𝑞′ 

𝜀0 𝐴 
𝑞 = 𝜀 

    
𝑞
 + 

𝑞′ 
  

𝐴 0 𝜀0 𝐴𝑘 𝐴 
𝑞 

 
 

𝑘𝜀0 𝐴 
= 𝐸 and 𝑞′ = 𝑃 

𝐴 
∴ 

𝑞 
= 𝜀 
 

𝐸 + 𝑃 
𝐴 0 

Where 𝐷 is the electric displacement. 

Key points: 

1. D is connected with free charge 

only. It is not altered by the 

introduction of the dielectric. 

The lines of D begin and end on 

free charges. 

2. P is connected with polarization 

charge only. The lines of P begin 

and end on polarization charges. 

3. E is connected with all charges 

that are actually present whether 

free or polarization. E is reduced 

inside dielectric with fewer lines. 
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❖ Important Questions: 

1. What are dielectrics? Explain polar and non – polar molecules. 

2. What is meant by dielectric? Discuss the behaviour of a dielectric in an electric field 

from atomic point of view. 

3. Define electric dipole moment. 

4. Explain polarization and polarizability. 

5. Define electric displacement vector, polarization and intensity of electric field. 

6. Define and derive the relationship among D, E and P. 

7. Define dielectric constant and susceptibility. Derive a relationship between dielectric 

constant and susceptibility. 

❖ Problems: 

1. The area of the plate of a parallel plate condenser is 100 cm2. The distance between 

plates  is 1 cm. A potential difference of 100 volt is applied. A slab of thickness 0.5 

cm and dielectric constant 7 is placed between plates. Calculate the values of E, D  

and P in the air and dielectric. 

2. The electric susceptibility of a medium is 948 × 10-11. Calculate the permeability (or 

absolute permeability) and relative permeability. 

3. If the dielectric constant of a medium is 3 and electric field intensity is 106 v/m, find 

the electric displacement D. (𝜀0 = 9 × 10−12) 

4. The thickness of dielectric between parallel plates of a condenser is 5 mm. Dielectric 

constant is 3. Electric field in the dielectric is 106 v/m. Calculate the surface charge 

density on the condenser plate, surface charge density on the dielectric, polarization, 

electric displacement and energy density. 

5. The dielectric constant of water is 78. Calculate its electrical permittivity. 

6. Calculate the value of dielectric constant, given permittivity in vacuum is 4 and 

permittivity of medium is 8. 

7. The dielectric constant of medium is 4. Electric field in the dielectric is 106 v/m. 

Calculate electric displacement and polarization. (𝜀0 = 9 × 10−12 F/m). 

8. The electric susceptibility of a material is 36 × 10-12 C2/N-m2. Calculate the value of 

dielectric constant and absolute permittivity of the material. (𝜀0 = 9 × 10−12 F/m). 

9. The permittivity of diamond is 1.46 × 10-10 C2/ N – m2. Compute the dielectric 

constant   and the electric susceptibility of diamond. 𝜀0 = 8.9 × 10−12 C2/ N – m2. 

10. The electric susceptibility of a material is 35.4 × 10-12 C2 / N – m2. What are the 

values of dielectric constant and the permittivity of the material? 

11. The dielectric constant of helium at 00 C is 1.000074. Find its electrical susceptibility 

at this temperature. 

12. The dielectric constant of a medium is 3.5. Find its permittivity and susceptibility. 

13. A NaCl crystal is subjected to an electric field of 1000 V/m. The resulting 

polarization is 4.3 × 10-8 C/m2. Calculate the electronic polarizability. 

14. Calculate the electronic polarizability of an Argon atom, given 𝑘 = 1.0024 at N.T.P 

and 𝑁 = 2.7 × 1035 atoms/m3. 

15. A solid elemental dielectric, with density 3 × 1028 atoms/m3 shows an electronic 

polarizability of 10-40 farad m2. Calculate the dielectric constant of the material. 
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Unit – II 

Chapter 3: Electric and Magnetic Fields 

❖ Force on a charged particle moving in a magnetic field: 

If a charged particle of charge 𝑞 moving with a velocity 𝑣 enters into a 

magnetic field of induction 𝐵 then it experience force given by 

𝐹 = 𝑞 𝑣 × 𝐵    

𝐹 = 𝑞𝑣𝐵 sin 𝜃 

Where 𝜃 is the angle between 𝑣 and 𝐵 . 

➢ The direction of 𝐹 is given by Flemings left hand rule. 

➢ If the charged particle is at rest 𝑣 = 0 in magnetic field, then no force acts on it. 

 
❖ Biot – Savart’s law: 

In 1820, Biot and Savart performed a 

series of experiments to study the magnetic 

field produced by various current carrying 

conductors. They obtained a relation by means 

of which B can be calculated at any point in 

space around a current carrying conductor. 

This relation is called as Biot and Savart law. 

Let 𝑖 be the current flowing through a 

conductor 𝐴𝐵 and 𝑃 be a point at a distance 𝑟 

from  the current  element.  According to  Biot 

and Savart, the field 𝐵 at any point can be 

calculated by dividing the conductor into no 

of infinitesimal current elements. Let 𝑑𝑙 be the 

length of one such element and 𝑑𝐵 be the magnetic field due to 𝑑𝑙 at a point 𝑃 distance of 

𝑟 from it. 

 
Biot and Savart observed that 

(i) It is directly proportional to the current 𝑖 flowing through the conductor 𝒅𝑩 ∝ 𝒊 

(ii) It is directly proportional to the length of the element taken 𝒅𝑩 ∝ 𝒅𝒍 

(iii) It is directly proportional to the sine of the angle 𝜃 between length element and the 

line joining the element to the point 𝑃 𝒅𝑩 ∝ 𝐬𝐢𝐧 𝜽 

(iv) It is inversely proportional to the square of the distance 𝑟 of the point 𝑃 from the 

element 𝑑𝑙 𝒅𝑩 ∝ 
𝟏

 
𝒓𝟐 

Combining all these factors 𝑑𝐵 ∝ 
𝑖 𝑑𝑙 sin 𝜃

 
𝑟 2 

 

 

Where 𝜇0 is proportionality constant, 𝜇 
4𝜋 

- Permeability of free space. 

The unit of 𝑑𝐵 is 𝑤𝑒𝑏𝑒𝑟/𝑚2 (or) Tesla. 
 

 

 

𝑑𝐵 = 
𝜇0 𝑖 𝑑𝑙 sin 𝜃 

4𝜋 𝑟2 

0 
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The resultant field at 𝑃 is 𝐵 = 𝑑𝐵 

❖ Applications of Biot – Savart law: 

❖ Magnetic field due to a long straight conductor (wire) carrying current: 

Consider an infinitely long 

wire placed in vacuum and carrying a 

current 𝑖. To calculate magnetic field 𝐵 at 

a point 𝑃 distance 𝑅 from the centre 𝑂 of 

the wire. We divide the wire into no of 

infinitesimal current elements. Consider 

one such element 𝐴𝐵 of length 𝑑𝑙. 

Let 𝑟 be the distance of the 

element from the point 𝑃 . 𝜃 the angle 

between 𝑑𝑙 and 𝑟. 

Magnetic field due to current element 𝐴𝐵 

at 𝑃 is 𝑑𝐵 = 
 𝜇 0  𝑖 𝑑𝑙 sin 𝜃  

4𝜋 𝑟 2 

Magnetic field due to whole conductor 
∞ 

𝐵 = −∞ 
𝑑𝐵 

𝐵 =
 𝜇 0 𝑖 ∞ 

4𝜋 −∞ 

sin 𝜃 𝑑𝑙 
 

𝑟 2 

From figure sin 𝜃 = sin 𝜋 − 𝜃 = 
𝑅 

= 
𝑟 

𝑅 
 

 

 𝑙2 +𝑅2 

 

 
∞ 

𝜇0𝑖 

 
 

𝑅 𝑑𝑙 
𝐵 = 

4𝜋 𝑙2 + 𝑅2 3 2 
−∞ 

To evaluate the above integral put 𝑙 = 𝑅 tan 𝛼 

𝑑𝑙 = 𝑅 𝑠𝑒𝑐2𝛼 𝑑𝛼 

Limits: 𝑙 = ∞ ⇒ tan 𝛼 = ∞ ⇒ 𝛼 = + 
𝜋

 
2 

𝑙 = −∞ ⇒ tan 𝛼 = −∞ ⇒ 𝛼 = − 
𝜋

 
2 

 
  iR 2 R sec2  

B =   0  d 
4  

− 
2 

 
  iR 2 R sec2  

B =    0  d 
 

  
4  R 

− 
2 

 
  i 2 

sec  

B = 0 cosd 
4R  

− 
2 

 i  

 

 i      B =     0   sin 2      =    0    sin − − sin  

4R − 4R 
 

2  2 
 

 

 

 
 

3 3 
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𝐵 =
 𝜇 0 𝑖 

weber/m2 or Tesla 
2𝜋𝑅 

❖ Magnetic field on the axis of a circular loop: 
 

Consider a circular loop of radius ′𝑎′ and carrying a current 𝑖. Let 𝑃 be a point on the 

axis of the coil at a distance 𝑥 from the centre 𝑂. To calculate the field at 𝑃, consider a 

small element 𝐴𝐵 of length 𝑑 𝑙. 

Let 𝑟 be the distance of the element from the point 𝑃 and 𝜃 = 900 be angle 

which the direction of current makes with the line joining the element to the point 𝑂. 
𝜇0 𝑖 𝑑𝑙 sin 𝜃 

𝑑𝐵 = 
4𝜋 𝑟2 

𝜇0 𝑖 𝑑𝑙 
𝑑𝐵 = 

4𝜋 𝑟2 

The vector 𝑑 𝐵 at the point 𝑃, due to the element 𝑑 𝑙 would be perpendicular to 𝑟 . 

This can be resolved into two components 𝑑𝐵 cos 𝜙, 𝑑𝐵 sin 𝜙 

𝑑𝐵 cos 𝜙 → Perpendicular to the axis 

𝑑𝐵 sin 𝜙 → along the axis 

If we take another element 𝐴′𝐵′ diametrically opposite to 𝐴𝐵 of same length. 

𝑑𝐵 cos 𝜙 components will cancel out each other. 

𝑑𝐵 sin 𝜙 components will add up along the axis. 

Magnetic field along the axis = 𝑑𝐵 sin 𝜙 
𝐵 =

 𝜇 0 𝑖 𝑑𝑙 
sin 𝜙 

4𝜋 𝑟 2 

=
  𝜇 0 𝑖 𝑑𝑙 sin 𝜙 

4𝜋𝑟 2 

=
 𝜇 0 𝑖

 𝑑𝑙 
𝑎 

 
 
 

𝑎 
 ∵ sin 𝜙 =     

4𝜋𝑟 2 𝑟 𝑟 

=
 𝜇 0 𝑖𝑎 

𝑑𝑙
 

4𝜋𝑟 3 

  𝑑𝑙 = 2𝜋𝑎 (Circumference of the coil) 

𝐵 =
 𝜇 0 𝑖𝑎 

× 2𝜋𝑎 
4𝜋𝑟 3 

= 
𝜇 0 𝑖𝑎 2 

2 𝑎 2 +𝑥 2 3 2 
 ∵ 𝑟2 = 𝑎2 + 𝑥2  

For N turns, Weber/m2 or Tesla 
 

 

 
 

𝑁𝜇0𝑖𝑎2 
𝐵 = 

2 𝑎2 + 𝑥2 3 2 
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Different cases: 

(i) At the centre of the coil 𝑥 = 0. Thus, at the centre of the coil 𝐵 = 
𝑁𝜇 0 𝑖𝑎 2  

= 
 𝜇 0 𝑁𝑖

 

(ii) At very far off from the loop 𝑥 ≫ 𝑎 and 𝑎2 + 𝑥2 3 2 ≈ 𝑥3 

𝐵 = 
𝜇 0 𝑁𝑖𝑎 2 

2𝑥 3 

2𝑎 3 2𝑎 

 

❖ Magnetic field induction due to Solenoid: 

Consider a long solenoid of length 𝑙 meter and radius 𝑎 meter as shown in fig. 

Let 𝑁 be the total no of turns in the solenoid. The no of turns 𝑛 per meter will ne 𝑁 𝑙. Let 

𝑖 be the current carried by solenoid. 

Now we will calculate the field in the following cases: 

(1) Field at an inside point 

(2) Field at an axial point 

(3) Field at the centre of the solenoid of finite length. 

1. Field at an inside point 
 

Let us consider a point 𝑃 inside the solenoid on the axis. To calculate 𝐵 at 

point 𝑃, we divide the solenoid into a number of narrow equidistant coils. Consider 

one coil of width 𝑑𝑥. The no of turns in 𝑑𝑥 is 𝑛𝑑𝑥. Let 𝑥 be the distance of point 𝑃 

from the centre 𝑂 of the coil. 

The field at 𝑃 due to elementary coil of width 𝑑𝑥 carrying current 𝑖 is given by 

𝑑𝐵 = 
𝜇 0  𝑛𝑑𝑥 𝑖𝑎 2 

2 𝑎 2 +𝑥 2 3 2 

From ∆ABC, sin 𝜃 = 
𝑟 𝑑𝜃

 
𝑑𝑥 

or 𝑑𝑥 = 
𝑟 𝑑𝜃

 
sin 𝜃 

From ∆APO, 𝑟2 = 𝑎2 + 𝑥2 

𝜇 0  𝑛
 𝑟 𝑑𝜃 

 𝑖𝑎 2 

𝑑𝐵 =  sin 𝜃  

2𝑟 3 

= 
𝜇 0 𝑛𝑖 𝑎 2 𝑑𝜃 

2𝑟 2 sin 𝜃 

𝑑𝐵 =
 𝜇 0 𝑛𝑖𝑑𝜃  

2 sin 𝜃 

𝑎 2 
    
𝑟 

 ∵ sin2 𝜙 =  
𝑎
  
𝑟 

= 
𝜇 0 𝑛𝑖𝑑𝜃 𝑠𝑖𝑛 2 𝜃 

2 sin 𝜃 

 
 
 

2 
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𝑑𝐵 = 
 𝜇 0 𝑛𝑖 sin 𝜃 𝑑𝜃  

2 

The field induction at 𝑃 due to whole 

solenoid can be obtained by 

integration between limits 𝜃1 and 𝜃2 

𝐵 =  
𝜃2  𝑑𝐵 =  

𝜃2   𝜇 0 𝑛𝑖 sin 𝜃 𝑑𝜃  

𝜃1 𝜃1 2 

𝐵 =
 𝜇 0 𝑛𝑖

 − cos 𝜃 𝜃2 
2 

𝐵 =
 𝜇 0 𝑛𝑖

 cos 𝜃 

𝜃1 

 
− cos 𝜃 

2 1 2 

At any axial point 𝑃, 𝜃1 = 0, 𝜃2 = 𝜋 

𝐵 =
 𝜇 0 𝑛𝑖

 cos 0 − cos 𝜋 =
 𝜇 0 𝑛𝑖

 2  
2 2 

 
 

2. Field at an axial end point: 

In this case 𝜃1 = 0, 𝜃2 = 900 

𝐵 =
 𝜇 0 𝑛𝑖

 cos 0 − cos 900 =
 𝜇 0 𝑛𝑖 

 
2 2 

 
 

This shows that field at either end is one half of its magnitude at the centre. 

3. Field at the centre of a solenoid of finite length: 

Consider a point 𝑃 is at the centre, i.e., it is at a distance of 𝑙 2 from 

either end. 

cos 𝜃1 = 
𝑙 2 

 𝑙 2 1 2 

 𝑎 2 +        
2 

= 
𝑙 

 4𝑎 2 +𝑙2 

cos 𝜋 − 𝜃2   = 
𝑙 2 

 𝑙 2 1 2 

 𝑎 2 +        
2 

= 
𝑙 

 4𝑎 2 +𝑙2 

cos 𝜋 − 𝜃2   = 
−𝑙 

 4𝑎 2 +𝑙2 

We know that 𝐵 =
 𝜇 0 𝑛𝑖

 cos 𝜃 − cos 𝜃 
2 1 2 

𝐵 =
 𝜇 0 𝑛𝑖

 
𝑙 

+ 
𝑙 

2 4𝑎 2 +𝑙2 4𝑎 2 +𝑙2 

𝐵 = 
   𝜇 0 𝑛𝑖𝑙    

= 
    𝜇 0 𝑁𝑖  

  

 4𝑎 2 +𝑙2 4𝑎 2 +𝑙2 

 

This expression gives the field at the centre of the solenoid of finite length. 
 

 

 

 

 

 

 

 

𝐵 = 
𝜇0𝑁𝑖 

 4𝑎2 + 𝑙2 

𝜇0𝑛𝑖 
𝐵𝑎𝑥𝑖𝑎𝑙  = 

2 
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❖ Hall effect: 

When a magnetic field is applied (along y – axis) perpendicular to a current (along x – 

axis) carrying conductor, then a potential difference is developed (along z – axis) between 

the points on opposite side of the conductor. This effect is known as Hall effect. 

Explanation: 
 

Consider a uniform, thick metal strip placed with its length parallel to x – axis. Let 𝑖 

be the current passed through the conductor along x – axis and a magnetic field B is 

established along y – axis. Due to the magnetic field, the charge carriers experience a 

force along z – axis. The direction of this force is given by Fleming’s left hand rule. 

Hence, electrons will be accumulated on the upper surface of the strip, i.e., on face 

PQNM as shown in fig. Due to this fact the upper side will be negatively charged while 

the lower side will be positively charged. Thus, a transverse potential difference is 

created. This e.m.f is known as Hall e.m.f. 

Hall field and Hall voltage: 

When the equilibrium is reached, the magnetic deflecting forces on the charge carriers 

are equal to the electric forces due to electric field. 

Magnetic force = 𝑞 𝒗𝑑 × 𝑩  

Hall electric force = 𝑞𝑬𝐻 (𝑬𝐻 = Hall  field) 

Net force on the charge carriers becomes zero 𝑞 𝒗𝑑 × 𝑩 + 𝑞𝑬𝐻 = 0 

𝑬𝐻 = − 𝒗𝑑 × 𝑩 = −𝑣𝑑 𝐵 

𝐸𝐻 = −𝑣𝑑 𝐵 

Drift velocity is related to the current density 𝑗 by 𝑣𝑑 =  
𝑗 

𝑛𝑞 

𝑛 − no of charge carriers per unit volume 

Hall 
field 

1 
𝐸𝐻 =     𝑗𝐵 

 
If 𝑉𝐻 

𝑛𝑞 

is the Hall voltage in equilibrium, then 

 
 𝑉 

𝐸𝐻 = 
𝑑 
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Thus, measuring the potential difference 𝑉𝐻 between the two faces, 𝐸𝐻 can be calculated 

using the above equation. 

Hall coefficient: 

The ratio of Hall electric field 𝐸𝐻 to the product of current density 𝑗 and magnetic 

induction B is known as Hall coefficient. This is denoted by 𝑅𝐻. 
 𝐸 

𝑅𝐻 = 
𝑗𝐵 

  

 𝐸𝐻  
= 

1 

𝑗𝐵 𝑛𝑞 

 

 

The Hall coefficient is negative when the charge carriers are electrons and positive when 

the charge carriers are holes. 

 
❖ Applications of Hall effect: 

1. Hall effect gives the information about the sign of charge carriers in electric 

conductor. It is found that most metals have negatively charged electrons. 

2. Hall effect is quite helpful in understanding the electrical conduction in metals and 

semiconductors. 

3. Hall effect can be used to measure the drift velocity of the charge carriers. 

𝑣𝑑 =  
𝑗 

𝑛𝑞 

4. The mobility of the charge carriers can be measured by the conductivity of the 

material and Hall electric field. 

 

 

 
❖ Important Questions: 

1. State and explain Biot and Savart law. 

2. Calculate the intensity of magnetic field due to a long straight conductor carrying 

current. 

3. Calculate the intensity of magnetic field at a point on the axis of a circular coil 

carrying current. 

4. What is Hall effect? Mention its applications. 

5. Explain Biot and Savart law. Calculate the intensity of magnetic field at a point on the 

axis of a circular coil carrying current. 

6. State and explain Biot and Savart law. Calculate B due to long straight wire using it. 

7. State and explain Boit – Savart law. Calculate B inside a long solenoid carrying 

current 𝑖. Show that the field at the ends of such a solenoid is half of that in the 

middle. 

8. Define Hall effect. Derive the expression for Hall coefficient. Write the applications 

of Hall effect. 
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❖ Problems: 

1. A long straight wire carries a current of 3.5 A. Find the magnetic induction at a point 

0.2 m from the wire. 

2. An infinitely long conductor carries a current of 10 mA. Find the magnetic field. 

3. At what distance from a long straight wire carrying a current of 12 A will the 

magnetic induction be equal to 3 × 105 T? 

4. A long straight wire carries a current of 10 A. An electron travels with a velocity of 5 

× 106 m/s parallel to the wire 0.1 m from it, and in a direction opposite to the current. 

What force does the magnetic field of current exert on the electron? 

5. A current of 1 amp is flowing in a circular coil of radius 10 cm and 20 turns. 

Calculate the magnetic field at a distance 10 cm on the axis of the coil and at the 

centre. 

6. Calculate the intensity of magnetic field at the centre of a circular coil of radius 20 

cm and 40 turns having a current 2A in it. 

7. A current of 1 amp is flowing in a circular coil of radius 10 cm and 20 turns. 

Calculate the intensity of magnetic field at a distance 10 cm on the axis of the coil 

and the centre. 

8. A solenoid of length 100 cm has 1000 turns wound on it. Calculate the magnetic field 

at the middle point of its axis when a current of 2A is passed through it. 

9. A solenoid of length 20 cm and radius 2cm is closely wound with 200 turns. 

Calculate the magnetic field intensity at either end of solenoid when the current in the 

windings is 5 amp. 

10. A long solenoid has 20 turns per cm. calculate the magnetic induction at the interior 

point on the axis for a current of 20 mA. 

11. The single carrier holes in a shaped silicon sample is 2.05 × 1022 m-3. Calculate its 

Hall coefficient. Electron charge = 1.602 × 10-19 C. 

12. A copper strip 2 cm wide and 1 mm thick is placed in a magnetic field with B = 1.5 

W/m2 with its thickness parallel to B. If a current of 200 amp is setup in the strip, 

what Hall potential is developed across the strip? The number of conduction 

electrons in the copper strip is 8.4 × 1028 /m3. 
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Chapter – 4: Electromagnetic induction 

❖ Introduction: 

In 1831, Faraday discovered that “whenever magnetic lines of force are cut by a 

closed circuit, an induced current flows in the circuit. The e.m.f giving rise to such 

currents is called induced electromotive force and the phenomenon is called 

electromagnetic induction. 

❖  Faraday’s experiment to demonstrate electromagnetic induction: 

Experiment 1: 

Consider a coil of wire connected in series with a galvanometer (G). When the  

magnet is inserted in the coil, the galvanometer shows a deflection in one direction and 

when it is withdrawn from the coil, the galvanometer shows the deflection in the opposite 

direction. This indicates a momentary current in the coil. When the magnet is stationary, 

there is no deflection in the galvanometer. If the experiment is repeated with magnetic 

poles reversed, deflections are also reversed. It is also observed that when the magnet is 

moved fast, the deflection in the galvanometer is large and when it is moved slowly, the 

deflection is small i.e., the deflection depends upon the rate at which magnet is inserted or 

withdrawn. 
 

Experiment 2: 

Consider a primary coil P connected to a battery and secondary coil S connected to a 

galvanometer. When the circuit is closed by pressing the key K, the galvanometer shows 

the deflection in one direction. When the circuit is open galvanometer shows the 

deflection in opposite direction. It is also observed that no deflection is produced in the 

galvanometer when current flows steadily in the circuit. 
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Similar effects are observed while increasing or decreasing the primary current or 

changing the relative position of the coils. 

❖ Explanation of induced e.m.f: 

Consider a magnet and a coil 

experiment. When the magnet is moved 

towards the coil, the flux through the coil 

increases. When the magnet is moved 

away from the coil, the flux through the 

coil decreases. In both the cases an  

induced e.m.f is obtained in the coil during 

the motion of the magnet. 

 
❖  Faraday’s laws of electromagnetic induction: 

1st Law: When the magnetic flux linked with a circuit is changed, an e.m.f is induced in 

the circuit. 

2nd Law: The magnitude of the induced e.m.f is directly proportional to the negative rate 

of change of magnetic flux linked with the circuit. 

𝑒 = −
 𝑑Φ𝐵  

𝑑𝑡 
............... (1) 

Where Φ𝐵 - Magnetic flux 

𝑒 − Induced e.m.f 

Here ′ − ′ sign denotes Lenz law 

Faraday’s second law is also known as Neumann’s law. 

 Integral and differential form of Faraday’s law: 

Consider the magnetic field produced by a closed circuit C of 

any shape which encloses a surface S in the field as shown in fig. 

The magnetic flux through a small area 𝑑 𝑆 is 𝑑Φ𝐵 = 𝐵 ∙ 𝑑 𝑆  

The flux through the entire circuit is Φ𝐵 = 𝑆 
𝐵 ∙ 𝑑 𝑆  ............ (2) 

When the magnetic flux is changed, an electric field is induced 

around the circuit. The line integral of the electric field gives the 

induced e.m.f in the closed circuit. 

𝑒 = 𝐸 ∙ 𝑑 𝑙 ............. (3) 

Substitute the values of 𝑒 and Φ𝐵 from equations (3) and (2) in 

equation (1), 

 

............. (4) 

 
This is the integral form of Faraday’s law. 

From Stokes theorem, 𝐸 ∙ 𝑑 𝑙 = ∇ × 𝐸 ∙ 𝑑 𝑆
𝑆 

From equations (4) and (5), 

   ∇ × 𝐸 ∙ 𝑑 𝑆 = − 
𝑑

 𝐵 ∙ 𝑑 𝑆  

𝑆 𝑑𝑡  𝑆 

 
 
 
 

  𝐸 ∙ 𝑑 𝑙 = − 
𝑑

 𝐵 ∙ 𝑑 𝑆  
𝑑𝑡 𝑆 
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   ∇  × 𝐸    ∙  𝑑   𝑆  = −   
𝜕𝐵   

∙  𝑑   𝑆  

𝑆 

Comparing on both sides, 

𝜕𝑡 

 ∇ × 𝐸 = − 
𝜕 𝐵  

 
𝜕𝑡 

or curl 𝐸 = − 
𝜕 𝐵  

 
𝜕𝑡 

This is the differential form of Faraday’s law. 

 
❖ Lenz’s law: 

According to Lenz’s law, the direction of induced e.m.f (or current) in a closed circuit 

is such that it opposes the original cause that produces it. This law is based on the 

principle of law of conservation of energy. 

So, when the magnetic flux linked with a circuit increases, the induced e.m.f developed 

such that it opposes the increase and vice versa. 

Explanation: 

Suppose the north pole of a magnet is 

moved towards a coil. As the magnet is 

pushed towards the coil, an induced e.m.f 

is setup in the coil. Due to this  current 

the coil behaves as a magnet. The face of 

the coil towards the north pole of the 

becomes North Pole and hence the 

motion of the magnet is opposed. 

Similarly if magnet is moved away from the coil then also the current developed in the 

circuit opposes the motion of the magnet. So the direction of induced e.m.f always 

opposes the cause that produced it. 

 Lenz’s law – consequence of conservation of energy: 

Assume that due to the motion of the magnet current is developed as shown in the fig. 

The face of the coil towards the magnet become south. Hence the coil attract magnet and 

kinetic energy of magnet increases continuously. This is contradiction to the law of 

conservation of energy. So, current never produces as shown in fig. Hence, we say that 

Lenz’s law is in accordance with the law of conservation of energy. 

 
❖ Self induction: 

When a current increases or decreases through a coil, then the coil opposes the change 

in the current by producing a back e.m.f. This phenomenon is called self induction. 

“The property of circuit or coil by virtue of which any change in the magnetic flux linked 

with it, induces an e.m.f in it, is called self inductance and the induced e.m.f is called 

back e.m.f.” 
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When the current is switched on, self induction opposes the growth of current, and when 

current is switched off, the self induction opposes the decay of current. 

Coefficient of self induction: 

The total magnetic flux Φ𝐵 linked with a coil is proportional to the current 𝑖, flowing in 

it, i.e., Φ𝐵 ∝ 𝑖 

Φ𝐵 = 𝐿𝑖 

𝐿 − self inductance of the coil. 

Definition 1: when 𝑖 = 1 then Φ𝐵 = 𝐿 . Hence the coefficient of self induction is 

numerically equal to the magnetic flux linked with coil when unit current flows through 

it. 

Definition 2: we know that 𝑒 = −
 𝑑Φ𝐵 

 

𝑑𝑡 

𝑒 = − 
𝑑  𝐿𝑖  

𝑑𝑡 

= −𝐿 
𝑑𝑖

 
𝑑𝑡 

When 𝑑𝑖 = 1, 𝑒 = −𝐿 
𝑑𝑡 

The coefficient of self inductance is numerically equal to the induced e.m.f in the coil, 

when the rate of change of current is unity. 

Unit: The unit of self inductance is henry which is the inductance of a coil in which an 

e.m.f of 1 volt is setup by a change of current at 1 ampere per second. 

 
❖ Self inductance of a long solenoid: 

Consider a long air core solenoid (of small diameter) of length 𝑙 meter and uniform 

cross sectional area 𝐴 metre2. Let 𝑛 be the number of turns per metre. Suppose a current 𝑖 

flows through it. 

The magnetic field inside the solenoid us given by 𝐵 = 𝜇0𝑛𝑖 weber/m2 

∴ Magnetic flux through each turn Φ𝐵 = 𝐵𝐴 = 𝜇0𝑛𝑖𝐴 Magnetic 

flux linked with all the turns of solenoid = 𝜇0𝑛𝑖𝐴 × 𝑁 Where 𝑁 is 

equal to the total no of turns in the solenoid. 

Φ𝐵 = 𝜇0𝑛𝑖𝐴 × 𝑛𝑙 (∵ 𝑁 = 𝑛𝑙) 

= 𝜇0𝑛2 𝑖𝐴𝑙 

The self inductance of the solenoid 𝐿𝑖 = 𝜇0𝑛2 𝑖𝐴𝑙 

 
henry 

where 𝑛 is the number of turns per unit length. 
 

 
 

𝐿 = 𝜇0𝑛2𝐴𝑙 
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In terms of total number of turns 𝑁 of the solenoid 𝑁 2 
 

 

𝐿 = 𝜇0 
𝑙 
  

 
henry 

𝐴𝑙 

 

❖ Energy stored in magnetic field or energy stored in inductor: 

Consider a very long solenoid of length 𝑙 and cross sectional area 𝐴. When the current 

is switched on, self induction opposes the growth of current, i.e., the current flows against 

back e.m.f and does work against it. 

𝑑𝑊 = −𝑒𝑖𝑑𝑡 

𝑑𝑊 = +𝐿𝑖 
𝑑𝑖 
𝑑𝑡 ∵ 𝑒 = −𝐿 

𝑑𝑖
 

𝑑𝑡 𝑑𝑡 

Hence, the total work done in bringing the current from zero to a steady maximum value 

𝑖0 is 
𝑊 = 

𝑖0 𝐿𝑖 
𝑑𝑖 
𝑑𝑡 = 𝐿 

𝑖0 𝑖 𝑑𝑖 
0 𝑑𝑡 0 

𝑖2 𝑖0 

𝑊 = 𝐿 
 

𝑊 = 𝐿 
1 

 
 

  
2 0 

𝑖2 
 

2 
2 

𝑊 = 
2 
𝐿𝑖0 

This work done is stored as magnetic field energy. 
𝑈 = Energy stored 1 2 

= 
2 
𝐿𝑖0 

The inductance of the solenoid is given by 𝐿 = 𝜇0𝑛2𝐴𝑙 

𝑈 = 
1

 𝜇 
2 

𝑛2𝐴𝑙 𝑖2 

𝑈 = 
1  𝜇 0 𝑛𝑖0  2 

𝐴𝑙
 

2 𝜇 0 

The magnetic field inside the solenoid 𝐵 = 𝜇0𝑛𝑖0 

𝑈 = 
1 𝐵2 

𝐴𝑙 
2 𝜇 0 

The energy density (energy per unit volume) 𝑢 is given by 

𝑢 = 
𝑈

 
𝐴𝑙 

= 
𝐵2 

2𝜇 0 

 
 

Joule/metre3 
 

 

❖ Mutual induction: 

Consider two coils P & S, when the 

current in the primary coil P changes, then an 

e.m.f is induced in the secondary coil S. This 

phenomenon is known as mutual induction. 

 
We know that flux linked with the secondary 

is proportional to the current in the primary. 

 

 

 

𝐵2 

𝑢 = 
2𝜇0 

𝜇0𝑁2𝐴 
𝐿 = 

𝑙 

0 
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Φ𝐵 ∝ 𝑖 

Φ𝐵 = 𝑀 

Where 𝑀 is a constant called the “Coefficient of Mutual induction” or “Mutual 

inductance” of the two coils. 

The e.m.f induced in the secondary S is given by 

𝑒 = −
 𝑑Φ𝐵  

𝑑𝑡 

𝑒 = − 
𝑑  
𝑀𝑖 = −𝑀 

𝑑𝑖
 

𝑑𝑡 𝑑𝑡 

Definition 1: when 𝑖 = 1 , Φ𝐵 = 𝑀 , Hence the coefficient of mutual induction is 

numerically equal to the magnetic flux linked with secondary coil when unit current flows 

in the primary coil. 

Definition 2: when 𝑑𝑖 = 1, 𝑒 = −𝑀, “The Mutual inductance M is nothing but the e.m.f 
𝑑𝑡 

induced in the secondary coil, when the rate of change of current is unity in the primary”. 

 
❖ Coefficient of Coupling (Coupling of two coils with flux linkage): 

Consider two coils very close to each other and having number of turns N1 & N2. Let 

𝑖1 , 𝑖2 be the current flowing through the two coils. Now we calculate the mutual 

inductance of the coils in terms of their self-inductance. By the definition of self 

inductance 

𝑁 Φ = 𝐿 𝑖 ⇒ 𝐿 =
 𝑁1 Φ1 ................. (1) 

1   1 1 1 1 𝑖1 

𝑁 
Φ 

= 𝐿 𝑖 ⇒ 𝐿 =
 𝑁2 Φ2 ................. (2) 

2 2 2 2 2 𝑖2
 

Here Φ𝑃 and Φ𝑆 are the magnetic fluxes linked with coils 1 and 2 due to their own 

currents. 

𝐿1 − Self inductance of coil 1 

𝐿2 − Self inductance of coil 2 

Let Φ21 be the flux linked with each turn of the secondary coil due to the current in the 

first. Similarly, Φ12 be the flux linked with each turn of the first coil due to the current in 

the second coil. 

∴ From the definition of mutual inductance 

𝑁2Φ21 = 𝑀21 𝑖1  ...................................... (3) 

𝑁1Φ12 = 𝑀12 𝑖2  ...................................... (4) 

If the two coils are wound on the same core so that the centre flux set up by either coil 

links with all the turns of the other, then the coupling is said to be perfect. 

Now Φ12 = Φ2 and Φ21 = Φ1 ............................. (5) 

𝑀21  = 𝑀12 = 𝑀𝑚𝑎𝑥 ............ (6) 

From (3) & (4), 

𝑁2Φ1 = 𝑀𝑚𝑎𝑥 𝑖1 ............................ (7) 

𝑁1Φ2 = 𝑀𝑚𝑎𝑥 𝑖2 ........................... (8) 
Multiplying (7) & (8), 𝑀2 𝑖 𝑖 = 𝑁 Φ 𝑁 Φ 

 
𝑀2  𝑁1 Φ1  𝑁2 Φ2 

𝑚𝑎𝑥 1 2 1 2 2 1 

𝑚𝑎𝑥 =   
𝑖1 𝑖2 

𝑀2 = 𝐿 𝐿 
𝑚𝑎𝑥 1 2 

 
 
 



GVS Reddy, Lecturer in Physics SRINIVASA DEGREE COLLEGE, 
JAMMALAMADUGU 

 

Unit - II 37 

Chapter – 4: Electromagnetic induction 
 
 

𝑀𝑚𝑎𝑥 = 𝐿1𝐿2 

The above equation is true when the whole of the effective flux from one coil links with 

the other. In actual practice, the above condition is never fulfilled. 

We express the mutual inductance between two coils as 𝑀𝑚𝑎𝑥 = 𝐾 𝐿1𝐿2 

Where 𝐾 is called as coefficient of coupling between the two coils. Its value varies from 0 

to 1 and depends upon the geometrical shape of the two coils and their relative positions. 

If 𝐾 = 1, the coupling is tight, i.e., no leakage of flux. 

If 𝐾 = 0, there is no coupling between the two coils. 

If 𝐾 > 0 and 𝐾 < 1, there is optimum coupling. 

 
❖ Transformer: 

A transformer is an A.C static  

device which transfers electric power 

from one circuit to another. It can raise 

or lower the voltage in a circuit but with 

a corresponding decrease or increase in 

current. 

Construction: 

The transformer consists of two 

coils. One is known as primary coil P 

while the other is known as secondary 

coil S. The two separate coils wound on 

the same magnetic core but are 

electrically insulated. 

 
The number of turns in the primary coil are N1 

The number of turns in the secondary coil are N2 

Transformer ratio or turns ratio 𝑎 = 
N2

 

N1 

• When the number of turns in the secondary N2 more than the number of turns in the 

primary N1 i.e., N2 > N1, then the transformer is known as step-up transformer. 

• When the number of turns in the primary N1 more than the number of turns in the 

secondary N2 i.e., N1 > N2 , then the transformer is known as step-down 

transformer. 

Principle: 

A transformer operates on the principle of mutual induction. When an alternating 

voltage is applied to the primary, an alternating current is setup in it. It induces a mutually 

induced e.m.f in the secondary of the same frequency. 

Let an a.c. current 𝑖1 flows through the primary coil. This causes a magnetic flux through 

primary. This induces an e.m.f equal and opposite to 𝑉1. 

𝑉 = 𝜀 = −𝑁 𝑑Φ 
 

 

................ (1) 
1 1 1 𝑑𝑡 

 
 
 
 

 



GVS Reddy, Lecturer in Physics SRINIVASA DEGREE COLLEGE, 
JAMMALAMADUGU 

 

Unit - II 38 

Chapter – 4: Electromagnetic induction 

 

The same flux is linked with the secondary coil. Therefore, the secondary voltage is given 

by 
𝑉 = 𝜀 = −𝑁 𝑑Φ 

 
 

............... (2) 
2 2 2 𝑑𝑡 

 2 
⇒ 

𝑉2 = 
𝑁2 = 𝑎 or 

𝑉1 = 
𝑉2

 

 1  𝑉1 𝑁1 𝑁1 𝑁2 

For step-up transformer, 𝑎 > 1 

𝑉2 > 𝑉1 i.e., A step-up transformer raise the voltage. 

From law of conservation of energy, 

Input power = Output power 

𝑉1𝑖1 = 𝑉2𝑖2 
 𝑉2 =

 𝑖1 ⇒ 𝑉 ∝ 
1 

𝑉1 𝑖2 𝑖 

So, In a transformer whatever we gain in voltage, we lose of it in current & vice versa. 

Efficiency: 

The efficiency of a transformer is defined as the ratio of output power to the input power. 

𝜂 = 
Output power 

Input power 

Applications: 

= 
𝑉2 𝑖2 

𝑉1 𝑖1 

• For long distance transmission of electricity. 

• In the manufacture of radio transmitters, tape recorders, etc. 

• In welding. 

• In rectification of a.c into d.c 

• Radio communication, electronic circuits, etc. 

 
❖ Power (Energy) losses in a transformer: 

In practical usage, some energy losses occur inside a transformer, resulting in less 

power output than the input power. 

1. Finite resistance of the winding 

2. Core losses 

3. Magnetic leakage. 

 
1. Finite resistance of the winding: 

Due to finite resistance of the winding, heat is developed in primary and 

secondary coils. 𝑖2𝑅 heat contributes to power loss in a transformer. The losses are 

also called as copper losses. 

2. Core losses: 

The core losses are    (a) Iron losses (b) Hysteresis losses. 

(a) Iron losses: induced currents and induced em.f are produced inside the core of the 

transformer. As a result, a part of the energy is wasted due to the generation of eddy 

currents. 

(b) Hysteresis losses: we know that some energy is required to magnetize the core. 

When secondary is closed, some energy is lost in magnetizing the core. When 

secondary is open, a very little current in primary, magnetizes the core. These are 

called hysteresis losses. 
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3. Magnetic leakage losses: 

We assumed that the entire magnetic flux of the primary links with the 

secondary also, but in practise there will be some leakage of flux. This result in a loss 

of energy supplied to the primary. This energy lost is known as magnetic leakage 

loss. 

 

 

 

 

 
❖ Important Questions: 

1. State and explain Faraday’s law. 

2. State and explain Lenz’s law. 

3. Define coefficient of self inductance. 

4. Define coefficient of mutual inductance. 

5. Obtain an expression for the energy stored in a solenoid. 

6. Derive an expression for the coefficient of coupling in the case of pair of coils. 

7. Define coefficient of the self induction and obtain an expression for self inductance 

of a solenoid. 

8. Explain the terms of self inductance and mutual inductance. Prove that 𝑀 = 𝐿1𝐿2 

9. Explain the construction and working of transformer. Write its applications. 

10. Describe the construction and working of transformer. Explain its energy losses and 

efficiency. 

Problems: 

1. A coil of 5 turns has dimensions 9 cm × 7 cm. It rotates at the rate of 15𝜋 rad/sec in a 

uniform magnetic field whose flux density is 0.8 weber/metre2. 

2. A coil of 160 turns of cross-sectional area 250 cm2 rotates at an angular velocity of 300 

rad/ sec about an axis parallel to the plane of the coil in a uniform magnetic field of 0.6 

weber/metre2. What is the maximum e.m.f induced in the coil? 

3. Calculate the self inductance of a solenoid of length 1 metre and area of cross-section 

0.01 m2 with 200 turns. 

4. What is the self inductance of a 50 cm long solenoid with 2 cm diameter and having 200 

turns? 𝜇0 = 4𝜋 × 10−7𝐻/𝑚  

5. A solenoid of length 0.50m wound with 5000turns/m of wire has a radius 4 cm. Calculate 

the self inductance of solenoid. 

6. A solenoid with self inductance of 100mH has 500 turns in it. If the number of turns are 

doubled, what is the self inductance? 

7. A coil has 600 turns. Its self inductance is 100mH. Find the self inductance of another 

same type of coil having 500 turns. 

8. A coil has an inductance 50 mH and 100 turns. Calculate the flux linked with it when 20 

× 10-3 A current is passed through it. 
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9. The current in the primary circuit of coils changes from 10 amp to 0 in a time of 0.1s. 

Find the induced e.m.f in the secondary coil. The mutual inductance between the two 

coils is given to be 2H. 

10. In a spark coil emf of 40,000 V is induced in the secondary when the primary current 

changes from 4 amp to 0 amp in 1.0 𝜇s. Find the mutual inductance between the primary 

and secondary windings to this coil. 

11. Calculate the mutual inductance between two coils when a current of 4 amp. Changes to 

12 amp. in 0.50 sec and induces an e.m.f of 50 mV in the secondary. 

12. Calculate the energy stored in the magnetic field of a solenoid of inductance 5 mH, when 

a maximum current of 3 amp flows through it. 

13. A coil of 200 turns carrying a current of 10 amp produces a magnetic flux of 10 

weber/turn. Calculate the energy stored in a magnetic field. 

14. A transformer converts 100 V A.C into 1000 V A.C. Find the ratio of number of turns of 

the primary to the secondary. 

15. In a transformer, there are 200 turns in primary coil and 400 turns in secondary coil. If the 

current in primary coil is 2 amp. Find current in secondary coil. 
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❖ Alternating current: 

An alternating current or a.c 

is defined as one which passes 

through a cycle of changes at 

regular intervals. The waveform 

of such a voltage or current is 

shown in fig. and is 

mathematically represented by 

𝑖 = 𝑖0 sin 𝜔𝑡 

𝐸 = 𝐸0 sin 𝜔𝑡 

Here   𝑖   or 𝐸  represents the 

instantaneous value whereas the peak or maximum value is represented by 𝑖0 and 𝐸0. The 

term 𝜔𝑡 is called the phase. 

The time taken for one cycle is known as time period represented by 𝑇 and the number of 

cycles per second gives the frequency of supply (𝑓 = 1 𝑇) 

 
❖ Average value of a.c during one complete cycle: 

The average or mean value of a.c in one complete cycle is zero. The value of current 

at any instant 𝑡 is given by 𝑖 = 𝑖0 sin 𝜔𝑡. 

The average value of a sinusoidal wave over one complete cycle is given by 
 
𝑇 
𝑖 sin 𝜔𝑡 

 𝑖0 cos 𝜔𝑡 𝑇 

𝑖𝑎𝑣 = 0   0 
= − 𝜔 0

 

 
𝑇 
𝑑𝑡 𝑇 

= −
 𝑖0

 cos 
2𝜋
 

𝑇 2𝜋 
𝑡 since 𝜔 = 

𝜔𝑇 𝑇 0 𝑇 

= −
 𝑖0

 cos 2𝜋 − cos 0 = −
 𝑖0

 1 − 1 = 0 
𝜔𝑇 𝜔𝑇 

Thus, the average value of a.c over one complete cycle is zero. 

 
❖ Average value of a.c during half cycle: 

The mean or average of a.c is the average of the sum of the instantaneous values taken 

for half a cycle. 

The sum of the instantaneous values for half a cycle is given by 
𝑇 2 

= 
0
 

𝑇 2 

𝑖𝑑𝑡 = 
0
 𝑖0 sin 𝜔𝑡 𝑑𝑡 

 
𝑇 2 

𝑖
 sin 𝜔𝑡 𝑑𝑡 2 𝑇 2 

∴ Mean value of a.c =  0 0 = 
 
𝑇 2 

𝑑𝑡
 𝑇 

 
0 

𝑖0 sin 𝜔𝑡 𝑑𝑡 

= 
2𝑖0

 
− cos 𝜔𝑡

 
𝑇 2 

= 
2𝑖0 

× 
𝑇 2𝜋 𝑇 2 

 − cos 𝑡  
𝑇 𝜔 0 𝑇 2𝜋 𝑇 0 

=
 𝑖0

 − cos 𝜋 + cos 0  
𝜋 

Mean value 𝑖 
 

𝑎𝑣 = 
2𝑖0 

𝜋 

Note: Similarly, for 𝐸 = 𝐸0 sin 𝜔𝑡 

The average value of alternating voltage for complete cycle is zero. 
 

 

0 
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The average value of alternating voltage for half cycle is 2𝑖0. 
𝜋 

 

❖ R.M.S value: 

The R.M.S value is the square root of the average of the sum of the square of the 

instantaneous values taken for one cycle. 

R.M.S value of current: 

The sum of the squares of the instantaneous values for a period is given by 
 
𝑇 
𝑖2 sin 𝜔𝑡 𝑑𝑡 

0 0 

 
𝑇 

𝑖2 sin 2 𝜔𝑡 𝑑𝑡 
Mean square value =  0 0  

 
𝑇 
𝑑𝑡 

= 
1

 
𝑇 
𝑖2 sin2 𝜔𝑡 𝑑𝑡 

 

𝑇 0 0 

The value of the integral 𝑇 sin2 𝜔𝑡 𝑑𝑡 is given by 
0 

 
𝑇 

sin2 𝜔𝑡 𝑑𝑡 = 
1

 
𝑇

 1 − cos 2𝜔𝑡 𝑑𝑡 
0 2 0 

1 𝑇 𝑇 

= 
2

 
0  
𝑑𝑡 − 

0
 cos 2𝜔𝑡 𝑑𝑡  

1 sin 2𝜔𝑡 
= 𝑇 −   

2 2𝜔 
1 

     = 
𝑇 
0 2 

𝑇 𝑖2 

Mean square value = × 𝑖2 × = 0 
𝑇 2 2 

∴ R.M.S value of current 𝑖 

R.M.S value of voltage: 

 

𝑟𝑚𝑠 =
 𝑖0  

 2 

The sum of the squares of the instantaneous values for a period is given by 
 
𝑇 
𝐸2 sin 𝜔𝑡 𝑑𝑡 

0 0 

 
𝑇 
𝐸2 sin 2 𝜔𝑡 𝑑𝑡 

Mean square value =  0 0  
 
𝑇 
𝑑𝑡 

= 
1

 
𝑇 
𝐸2 sin2 𝜔𝑡 𝑑𝑡 

 

𝑇  0 0 

The value of the integral 𝑇 sin2 𝜔𝑡 𝑑𝑡 is given by 
0 

 
𝑇 

sin2 𝜔𝑡 𝑑𝑡 = 
1

 
𝑇

 1 − cos 2𝜔𝑡 𝑑𝑡 
0 2 0 

1 𝑇 𝑇 

= 
2

 
0  
𝑑𝑡 − 

0
 cos 2𝜔𝑡 𝑑𝑡  

1 sin 2𝜔𝑡 
= 𝑇 −   

2 2𝜔 
     = 

𝑇 
0 2 

Mean square value = 
1 × 𝐸2 × 

𝑇
 

𝑇 2 

𝐸2 

=  0  

2 

∴ R.M.S value of voltage =
 𝐸0

 

 2 

❖ Form factor: 

It is defined as the ratio of rms value to the average value i.e., 

Form factor = 
𝑖 𝑟𝑚𝑠 

 

𝑖𝑎𝑣 

𝑖𝑟𝑚𝑠 
=

 𝑖0 
and 𝑖 
 2 

 

𝑎𝑣 = 
2𝑖0 

𝜋 

Form factor =
 𝑖0 

× 
𝜋 

= 
𝜋
 

 

= 1.11 
 2 2𝑖0 2 2 

 

 

𝑇 

𝑇 
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❖ A.C through pure resistance only: 

 

Consider a circuit containing pure resistance in series with a.c voltage source. The 

applied voltage is 𝐸 = 𝐸0 sin 𝜔𝑡 ........................................... (1) 

By Ohm’s law 𝐸 = 𝑖𝑅 

𝐸0 sin 𝜔𝑡 = 𝑖𝑅 

𝑖 will be maximum when the term sin 𝜔𝑡 is unity. 

𝑖 =
 𝐸0 

sin 𝜔𝑡 ................................................................................. (2) 
𝑅 

𝑖0 =
 𝐸0 

𝑅 
................ (3) 

Hence, (2) becomes 𝑖 = 𝑖0 sin 𝜔𝑡 

From (1) & (4), we conclude that voltage and current are in phase with each other. 

 
❖ A.C through pure inductance only: 

Consider a circuit containing pure inductance in series with a.c voltage source. The 

applied voltage is 𝐸 = 𝐸0 sin 𝜔𝑡 . Due to the self inductance of the coil an e.m.f is 

generated which opposes the rise or fall of current through it. 

𝐸 = 𝐿 
𝑑𝑖

 
𝑑𝑡 

𝐸0 sin 𝜔𝑡 = 𝐿 
𝑑𝑖

 
𝑑𝑡 

 𝐸0 

𝑑𝑖 =   
𝐿 
  sin 𝜔𝑡 𝑑𝑡 ...................................................................................................... (1) 

Integrating, we get 𝑖 =
 𝐸0 

 sin 𝜔𝑡 𝑑𝑡 = −
 𝐸0 

cos 𝜔𝑡 =
 𝐸0 

sin 𝜔𝑡 − 
𝜋 ............................................................. 

(2) 
𝐿 

Maximum value of 𝑖 is 𝑖 =
 𝐸0 

when 
𝜔𝐿 

𝜋 
 

 

𝜔𝐿 2 

0 𝜔𝐿 
sin 𝜔𝑡 − = 1 

2 
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𝜋 

𝑖 = 𝑖0 sin 𝜔𝑡 − 
2 
  

The current lags behind the voltage by 𝜋 radians or 900. 
2 

𝑖0 =
 𝐸0 

, here 𝜔𝐿 plays the role of effective resistance. It is called inductive reactance and 
𝜔𝐿 

is denoted by 𝑋𝐿 = 𝜔𝐿. 

 
❖ A.C through pure capacitance only: 

Consider a circuit containing pure capacitance only in series with a.c voltage source. 

The applied voltage is 𝐸 = 𝐸0 sin 𝜔𝑡. If 𝑞 is the charge on plates at any instant, then 

𝑞 = 𝐶𝐸 ................ (1) 

𝑞 = 𝐶𝐸0 sin 𝜔𝑡 
From definition of current 𝑖 = 

𝑑𝑞 
= 
𝑑 
𝐶𝐸 

  

sin 𝜔𝑡 = 𝜔𝐶𝐸 cos 𝜔𝑡 

𝑖 =
 𝐸0 

cos 𝜔𝑡 =
 𝐸0 

 

𝑑𝑡 

sin 𝜔𝑡 + 

𝑑𝑡 0 0 

𝜋
 
 

 
 

1 𝐶𝜔 1 𝐶𝜔 2 

Maximum current 𝑖0 
𝜋 

=
 𝐸0 

when 
1 𝐶𝜔 

𝜋 
sin 𝜔𝑡 + = 1 

2 

𝑖 = 𝑖0 sin 𝜔𝑡 + 
2 
  

The current leads the voltage by 𝜋 radians or 900. 
2 

𝑖 =
 𝐸0 

, here 1 plays the role of effective resistance. It is called capacitive reactance 
0 1  𝐶𝜔 

 

𝜔𝐶 

and is denoted by 𝑋𝐶 = 
1 

𝜔𝐶 

 

❖ A.C circuit containing resistance and inductance (RL or LR circuit): 

Consider a circuit containing 

resistance R and an inductance L in 

series connected to a source of 

alternating voltage as shown in fig. Let 𝑖 

be the current and an induced e.m.f is 

setup in the inductance which opposes 

the applied e.m.f and is given by −𝐿
 𝑑𝑖 

. 
𝑑𝑡 

According to Ohm’s law, 𝐸 = 𝐿 
𝑑𝑖  

+ 𝑅𝑖 
𝑑𝑡 

𝐿 
𝑑𝑖  

+ 𝑅𝑖 =  
 

sin 𝜔𝑡 .......................................... (1) 
𝑑𝑡 0 
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The above equation is of the form 𝑑𝑦 + 𝑃𝑦 = 𝑄 
𝑑𝑥 

The trial solution of equation (1) is 𝑖 = 𝑖0 sin 𝜔𝑡 − 𝜙 ............................................. (2) 

Where 𝑖0 and 𝜙 are constants. 

Differentiate equation (2) with respect to time 
𝑑𝑖 

= 𝑖
 

𝑑𝑡 
𝜔 cos 𝜔𝑡 − 𝜙 ....................................................................................... (3) 

Substituting the values of 𝑖 and 𝑑𝑖 from eqs. (2) and (3) in eq. (1) 
𝑑𝑡 

𝐿𝑖0𝜔 cos 𝜔𝑡 − 𝜙  + 𝑅𝑖0 sin 𝜔𝑡 − 𝜙  = 𝐸0 sin 𝜔𝑡 

𝐿𝑖0𝜔 cos 𝜔𝑡 − 𝜙  + 𝑅𝑖0 sin 𝜔𝑡 − 𝜙  = 𝐸0 sin  𝜔𝑡 − 𝜙  + 𝜙  

𝐿𝑖0𝜔 cos 𝜔𝑡 − 𝜙  + 𝑅𝑖0 sin 𝜔𝑡 − 𝜙  = 𝐸0 sin 𝜔𝑡 − 𝜙  cos 𝜙 + 𝐸0 cos 𝜔𝑡 − 𝜙  sin 𝜙 

Equating the cos 𝜔𝑡 − 𝜙 and sin 𝜔𝑡 − 𝜙 on both sides of above equation 

𝐿𝑖0𝜔 = 𝐸0 sin 𝜙  ...............................(4) 

𝑅𝑖0 = 𝐸0 cos 𝜙  .................................(5) 

Squaring and adding equations (4) and (5), 
𝐸2 = 𝐿2𝑖2𝜔2 + 𝑅2𝑖2 = 𝑖2 𝑅2 + 𝐿2ω2  

0 

∴ 𝑖0 

0 0 

=
  𝐸0  

  𝑅2 +𝐿2ω2  

0 

............. (6) 

eq 4 
⇒ tan 𝜙 = 

𝜔𝐿 ............. (7) 
eq (5) 𝑅 

From (2), 𝑖 =
  𝐸0 

sin 𝜔𝑡 − 𝜙 ................................. (8) 
  𝑅2 +𝐿2ω2  

and 𝜙 = tan−1 
𝜔𝐿 

  
𝑅 

Equation (8) represents the current in the circuit at any instant. 

(i) The amplitude of the current 𝑖0 =
  𝐸0  

  𝑅2 +𝐿2ω2   

(ii) The current lags in phase behind the e.m.f by an angle given by 

𝜙 = tan−1 
𝜔
𝐿 

  
𝑅 

  = tan−1 
𝑋𝐿 

 

𝑅 

(iii) The impedance 𝑍 of the circuit 𝑍 =
 𝐸0 

= 𝑅2 + 𝐿2ω2  
𝑖0 

𝑍 = 𝑅2 + 𝑋2  

Vector diagram of RL or LR circuit: 

Let 𝐸𝑅 and 𝐸𝐿 be the magnitudes of 

voltages across the resistance 𝑅 and 

inductance 𝐿 respectively. Current 𝑖 is same 

in 𝑅 and 𝐿, So 

𝐸𝑅 = 𝑖𝑅 

𝐸𝐿 = 𝑖𝑋𝐿 = 𝑖𝜔𝐿 

The vector diagram can be plotted by 

considering the fact that the voltage across 

resistance always remain in phase with the 

current but the voltage across inductance lead over current 900. So 𝐸𝑅 is represented  

along the x – axis and 𝐸𝐿 at 900 ahead to 𝐸𝑅 on the y – axis. Thus, 𝐸𝑅 and 𝐸𝐿 are mutually 

at right angles as shown in fig. 

 

 

 
 

  

0 
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The resultant voltage across the inductance and 

resistance in series is given by parallelogram law of 

vector addition. 
𝐸2 = 𝐸2 + 𝐸2 

𝑅 𝐿 

 𝑖𝑍 2 =  𝑖𝜔𝐿 2 +  𝑖𝑅 2 

𝐸 = 𝑖𝑍, where 𝑍 is impedance of the circuit. 

𝑖2𝑍2 = 𝑖2𝜔2𝐿2 + 𝑖2𝑅2 

𝑍2 = 𝑅2 + 𝜔2𝐿2 

𝑍 = 𝑅2 + 𝜔2𝐿2 
 𝐸𝐿  𝜔𝐿 

 
 

−1 𝜔𝐿 
 

 tan 𝜙 =   
𝐸𝑅 

  =   
𝑅 
  or 𝜙 = tan 

𝑅 

❖ A.C circuit containing resistance and capacitance (RC or CR circuit): 

Consider a circuit containing 

resistance R and a capacitance C in 

series connected to a source of 

alternating voltage as shown in fig. 

Let 𝑞 be the charge on the capacitor at 

any instant 𝑡 and 𝑖 be the current in the 

circuit. The potential difference 

across the capacitor is 𝑞. 
𝐶 

According to Ohm’s law, 𝐸 = 
𝑞 + 𝑖𝑅 
𝐶 

𝑞 + 𝑖𝑅 =  
 

sin 𝜔𝑡 
𝐶 0 

Differentiating above with respect to time. 
1 𝑑𝑞 + 𝑅 

𝑑𝑖 
= 𝐸 𝜔 cos 𝜔𝑡 

  

𝐶 𝑑𝑡 

𝑅 
𝑑𝑖 

𝑑𝑡 

𝑑𝑡 0 

+ 
𝑖 
= 𝐸 𝜔 cos 𝜔𝑡 ∵ 𝑖 = 
𝐶 

 
𝑑𝑞 

 
 

𝑑𝑡 

 
  ............ (1) 

The above equation is of the form 𝑑𝑦 + 𝑃𝑦 = 𝑄 
𝑑𝑥 

The trial solution of equation (1) is 𝑖 = 𝑖0 sin 𝜔𝑡 − 𝜙 ............................................. (2) 

Where 𝑖0 and 𝜙 are constants. 

Differentiate equation (2) with respect to time 
𝑑𝑖 

= 𝑖
 

𝑑𝑡 
𝜔 cos 𝜔𝑡 − 𝜙 ....................................................................................... (3) 

Substituting the values of 𝑖 and 𝑑𝑖 from eqs. (2) and (3) in eq. (1) 
𝑑𝑡 

𝑅𝑖 𝜔 cos 𝜔𝑡 − 𝜙 +
 𝑖0 

sin 𝜔𝑡 − 𝜙 = 𝐸 𝜔 cos 𝜔𝑡 
0 𝐶 0 

𝑅𝑖 𝜔 cos 𝜔𝑡 − 𝜙 +
 𝑖0 

sin 𝜔𝑡 − 𝜙 = 𝐸 𝜔 cos 𝜔𝑡 − 𝜙 + 𝜙  
0 𝐶 0 

𝑅𝑖 𝜔 cos 𝜔𝑡 − 𝜙  + 
 𝑖0  

sin 𝜔𝑡 − 𝜙  = 𝐸 𝜔 sin 𝜔𝑡 − 𝜙  cos 𝜙 + 𝐸 𝜔 cos 𝜔𝑡 − 𝜙  sin 𝜙 
0 𝐶 0 0 

Equating the cos 𝜔𝑡 − 𝜙 and sin 𝜔𝑡 − 𝜙 on both sides of above equation 

𝑅𝑖0𝜔 = 𝐸0𝜔 sin 𝜙 ⇒ 𝑅𝑖0 = 𝐸0 sin 𝜙 ....................................... (4) 
 𝑖0 

= 𝐸 𝜔 cos 𝜙 ⇒
 𝑖0 

= 𝐸 cos 𝜙 ........................................... (5) 
𝐶 0 𝐶𝜔 0 

Squaring and adding equations (4) and (5), 
 

 

 
 

0 
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𝐸2 =  𝑅𝑖  2 +   
𝑖0
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0 0 

𝐸2 

  
𝐶𝜔 

𝑖2 =  0  

0 

 

𝑖0 

2          1  

𝐶 𝜔 

=
  𝐸0  

  2          1  

𝐶 𝜔 

 
............. (6) 

eq 4 
⇒ tan 𝜙 = 

1 𝐶𝜔 ............. (7) 
eq (5) 𝑅 

From (2), 𝑖 =
  𝐸0 

 

  2 1  

𝐶 𝜔 

sin 𝜔𝑡 − 𝜙 ............................... (8) 

and 𝜙 = tan−1 
1 𝐶𝜔 
    

𝑅 

Equation (8) represents the current in the circuit at any instant. 
 

(i) The amplitude of the current 𝑖0 =
  𝐸0  

  2 1  

𝐶 𝜔 

(ii) The voltage lags in phase behind the current by an angle given by 

𝜙 = tan−1 
1 𝐶𝜔 

    = tan 
𝑅 

𝑋𝐶 
 

𝑅 
 

 

(iii) The impedance 𝑍 of the circuit 𝑍 =
 𝐸0  

=    𝑅2 + 
1
 

 
 

𝑍 = 𝑅2 + 𝑋2  

𝑖0 𝐶2 𝜔 2 

 

Vector diagram of RC or CR circuit: 

Let 𝐸𝑅 and 𝐸𝐶 be the 

magnitudes of voltages  across 

the resistance 𝑅 and capacitance 

𝐶 respectively. Current 𝑖 is same 

in 𝑅 and 𝐶, So 

𝐸𝑅 = 𝑖𝑅 

𝐸𝐶 = 𝑖𝑋 =  
𝑖 

𝜔𝐶 

The vector diagram can be 

plotted by considering the fact 

that the voltage across resistance 

always remain in phase with the 

current but the voltage across capacitance lags 

behind current 900. So 𝐸𝑅 is represented along the  

x – axis and 𝐸𝐶 at 900 below to 𝐸𝑅 on the y – axis. 

Thus, 𝐸𝑅 and 𝐸𝐶 are mutually at right angles as 

shown in fig. 

The resultant voltage across the capacitance and 

resistance in series is given by parallelogram law 

of vector addition. 
𝐸2 = 𝐸2 + 𝐸2 

𝑅 𝐶 

 
 
 

−1   

2 
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2 0 

 
 

 𝑖𝑍 2 = 
𝑖
 + 

𝜔𝐶 

 
 
 

𝑖𝑅 2 
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𝐸 = 𝑖𝑍, where 𝑍 is impedance of the circuit. 

𝑖2𝑍2 = 
𝑖2

 

𝜔 2𝐶2 + 𝑖2𝑅2 

𝑍2 = 𝑅2 + 𝜔2𝐶2 
 

 

𝑍 = 𝑅2 + 𝜔2𝐶2 
 𝐸𝐶  

 
 
 

1 𝜔𝐶 
 

 

 
 
 

−1 1 
 

 tan 𝜙 =   
𝐸𝑅 

  =   
𝑅 

  or 𝜙 = tan   
𝜔𝐶𝑅 

 

❖ A.C circuit containing inductance, capacitance and resistance in series (LCR 

circuit): 

Consider a circuit containing 

resistance R, capacitance C and 

inductance L in series connected to a 

source of alternating voltage as shown 

in fig. Let 𝑞 be the charge on the 

capacitor at any instant 𝑡 and 𝑖 be the 

current   in   the  circuit.   The potential 

difference across the capacitor is 𝑞 and 
𝐶 

the back e.m.f due to self inductance is 

𝐿
 𝑑𝑖 

.
 

𝑑𝑡 

According to Ohm’s law, 𝐸 = 𝐿 
𝑑𝑖  

+ 𝑖𝑅 + 
𝑞
 

𝐿 
𝑑𝑖 𝑞 

 
  

𝑑𝑡 𝐶 

𝑑𝑡 
+ 𝑖𝑅 + 

𝐶 
= 𝐸0 sin 𝜔𝑡 

Differentiating, we get 𝐿 
𝑑2 𝑖 

+ 𝑅 
𝑑𝑖 

+ 
1 𝑑𝑞 

= 𝐸 𝜔 cos 𝜔𝑡 
   

𝐿 
𝑑2 𝑖 

+ 𝑅 
𝑑𝑖 𝑖 

 
   

𝑑𝑡 2 𝑑𝑡 𝐶 𝑑𝑡 0  ............ (1) 

𝑑𝑡 2 𝑑𝑡 
+ 
𝐶 

= 𝐸0𝜔 cos 𝜔𝑡 

The trial solution of equation (1) is 𝑖 = 𝑖0 sin 𝜔𝑡 − 𝜙 .................................. (2) 

Where 𝑖0 and 𝜙 are constants. 

Differentiate equation (2) with respect to time 
𝑑𝑖 

= 𝑖
 

𝑑𝑡 
𝜔 cos 𝜔𝑡 − 𝜙  

𝑑2 𝑖 
= −𝑖 

𝑑𝑡 
𝜔2 sin 𝜔𝑡 − 𝜙  

Substituting the values of 𝑖, 𝑑𝑖 and 𝑑
2 𝑖 

in equation (1), we get 
𝑑𝑡 

2 
𝑑𝑡 2 

1 
 

 −𝐿𝑖0𝜔 sin  𝜔𝑡 − 𝜙  + 𝑅𝑖0𝜔 cos 𝜔𝑡 − 𝜙 + 𝑖0 sin 𝜔𝑡 − 𝜙 
𝐶 

= 𝐸0𝜔 cos 𝜔𝑡 
2 1 −𝐿𝑖0𝜔 

𝜙  
sin  𝜔𝑡 − 𝜙  + 𝑅𝑖0𝜔 cos  𝜔𝑡 − 𝜙  + 

𝐶 
𝑖0 sin  𝜔𝑡 − 𝜙 

= 𝐸0𝜔 cos 𝜔𝑡 − 𝜙 + 

2 1 −𝐿𝑖0𝜔 
sin  𝜔𝑡 − 𝜙  + 𝑅𝑖0𝜔 cos  𝜔𝑡 − 𝜙  + 

𝐶 
𝑖0 sin  𝜔𝑡 − 𝜙 

= 𝐸0𝜔 cos 𝜔𝑡 − 

𝜙 cos 𝜙 − 𝐸0𝜔 sin 𝜔𝑡 − 𝜙 sin 𝜙 

Comparing the coefficients of sin 𝜔𝑡 − 𝜙 and cos 𝜔𝑡 − 𝜙 on both sides of above eq 
−𝐿𝑖 𝜔2 +

 𝑖0 
= −𝐸 𝜔 sin 𝜙 or 2 1 

 
 

.......... (3) 
0 𝐶 0  −𝐿 + 

𝐶
 𝑖0 = −𝐸0𝜔 sin 𝜙 

 

 
 

0 
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𝑅𝑖0𝜔 = 𝐸0𝜔 cos 𝜙  .....................................................(4) 

Squaring and adding equations (4) & (5), 
2 1 2 

 
 

 2  2     2 2 2 

 −𝐿 + 
𝐶

 𝑖0 + 𝑅 𝑖0 𝜔 = 𝐸0 𝜔 

𝑖2 𝑅2 + 𝐿ω − 
1 2

 
0 

 

𝑖0 

  
Cω 

=
  𝐸0  

  1 2 
 𝑅 + 𝐿ω−      

Cω 

  = 𝐸0 

 
................ (5) 

 
eq 3  

 
 −𝐿 2 +    

 

 
 𝜔𝐿−1 𝐶𝜔  

 
 

eq (4) 
⇒ tan 𝜙 = −  𝐶 = 

𝑅𝜔 𝑅 

(i) The maximum current is given by 𝑖0 =
  𝐸0  

  1 2 
 𝑅 +  𝐿ω−      

Cω 

 

 
 

(ii) The impedance of the circuit is 𝑍 = 𝑅2 + 𝐿ω − 
1 2 

 
 

 2  
    = 𝑅 

Cω 
+ 𝑋𝐿 − XC 

(iii) When 𝐿ω > 
1 

, 𝜙 is positive, i.e., current lags behind the applied e.m.f. 
Cω 

When 𝐿ω = 
1 

, 𝜙 = 0, the current is in phase with e.m.f 
Cω 

When 𝐿ω < 
1 

, 𝜙 is negative, i.e., current leads the e.m.f 
Cω 

 

❖ Series resonant circuit: 

The LCR series circuit has a very large capacitive reactance 1 𝜔𝐶 at  low  frequencies 

and a very large inductive reactance 𝜔𝐿 at high frequencies. So at a  particular frequency, 

the total reactance in the circuit is zero 𝜔𝐿 = 1 𝜔𝐶 . Under this condition, the resultant 

impedance of the circuit is minimum. 

The particular frequency of A.C at which impedance of a series LCR circuit becomes 

minimum (or the current becomes maximum), [when 𝝎𝑳 = 𝟏 𝝎𝑪 ] is called the 

resonant frequency and the circuit is called as series resonant circuit. 

At resonant frequency 𝜔𝐿 = 1 𝜔𝐶 

𝜔2 = 
1
 
𝐿𝐶 

𝜔 = 
1
 
 𝐿𝐶 

The resonant frequency 𝑓0 of the series resonant circuit is given by 

2𝜋𝑓0 = 
1 

 𝐿𝐶 
 

 

The variation of the peak value of the current with frequency of the applied e.m.f is 

shown in fig. we observe the following points. 

(i) The maximum current occurs at a particular frequency called as resonant frequency 

𝑓0. 
 

 

 

 

𝑓0 = 
1 

2𝜋 𝐿𝐶 
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(ii) The peak value of the curve depends on 

the resistance of the circuit. When 𝑅 is 

low, the peak value is high and vice – 

versa. The peak is known as sharpness of 

resonance. 

(iii) The series resonant circuit is sometimes 

called as acceptor circuit. The reason is 

that impedance of the circuit is minimum 

at resonance and due to this fact it 

readily accept that current out of the 

many currents whose frequency is equal 

to its resonant frequency. 

 

❖ Parallel resonant circuit: 

A parallel resonant circuit is shown in 

fig. Here an inductance 𝐿 and a resistance 

𝑅 are connected in series in one branch 

and a capacitance 𝐶 in another branch. An 

A.C voltage source is commonly 

connected to two branches. The current is 

divided into two branches at the junction 

point. From Kirchhoff’s law 

𝑖0 = 𝑖1 + 𝑖2 

................ (1) 

Let 𝑍 be the impedance of the circuit. 

Impedance of inductance and resistance branch, 𝑍1 =  𝑅 + 𝑗𝜔𝐿  

Impedance of condenser branch, 𝑍2 =  
1 

𝑗𝜔𝐶 

The resultant impedance for a parallel circuit is given by 1 = 
1 

+ 
1
 

1 
= 

1 
+ 

1 
𝑍 𝑍1 𝑍2 

𝑍 𝑅+𝑗𝜔𝐿 1 𝑗𝜔𝐶 

1 
= 

1 + 𝑗𝜔𝐶  
𝑍 𝑅+𝑗𝜔𝐿 

Admittance 𝑌 = 
1 

= 
1
 + 𝑗𝜔𝐶  

𝑍 

𝑌 = 
 𝑅−𝑗𝜔𝐿   

𝑅+𝑗𝜔𝐿 

+ 𝑗𝜔𝐶 
 𝑅−𝑗𝜔𝐿   𝑅+𝑗𝜔𝐿   

=   
 𝑅−𝑗𝜔𝐿   

 𝑅2 +𝜔2𝐿2  

= 
𝑅 

+ 𝑗𝜔𝐶 

+ 𝑗 𝜔𝐶 − 
𝜔𝐿

 

 𝑅2 +𝜔2𝐿2   𝑅2 +𝜔2 𝐿2    
𝑅 2 

 
 

𝜔𝐿 

 

2 1 2 

The magnitude of admittance is given by 𝑌 =    
 𝑅2 

 

+𝜔 
  

𝐿    
+ 𝜔𝐶 − 

 𝑅2 

 

+𝜔 
  

𝐿    

The admittance is minimum or impedance is maximum at a particular frequency, when 

𝜔𝐶 = 
𝜔𝐿

 
 𝑅2 +𝜔2 𝐿2   

or 𝐶 = 
𝐿
 

 𝑅2 +𝜔2 𝐿2   

𝐶𝑅2 + 𝐶𝜔2𝐿2 = 𝐿 
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𝐶𝜔2𝐿2 = 𝐿 − 𝐶𝑅2 

𝜔2 = 
𝐿−𝐶𝑅2 

= 
1 

 
− 

𝑅2 

  
𝐶𝐿2 

1 
 
𝑅2 

𝐿𝐶 

1 2 

𝐿2 

𝜔 = − 
𝐿𝐶 

 
 

𝐿2   

𝜔 1 1 𝑅2 1 2 

𝑓 = =   
2𝜋 2𝜋  𝐿𝐶 

− 
𝐿2   

 

 

At this frequency, the admittance is minimum (impedance is maximum) and hence, the 

current is minimum. Such a frequency is called as resonant frequency. The circuit is 

known as parallel resonant circuit. 

 
❖ Quality factor 𝑸 of circuit: 

The quality factor is defined as 𝟐𝝅 times the ratio of the energy stored to the 

average energy loss per period. The quality factor is a measure of the efficiency of 

energy stored in an inductor or capacitor when an alternating current is applied. 
energy stored 

𝑄 = 2𝜋   

energy lost per period 

The energy is stored in form of electric field between the plates of a capacitor. When 𝑉0 is 

applied voltage across the plates of a capacitor, 
Energy stored in capacitor 1 

2

 
𝐸𝐶 = 

2 
𝐶𝑉0 

The energy is stored in the form of magnetic field around the inductor. When 𝑖0 is the 

current passing through the inductor, 
Energy stored in inductor 1 2 

𝐸𝐿 = 
2 
𝐿𝑖0 

𝑄 = 2𝜋 
energy stored 

energy  lost  per  period 

𝑄 = 2𝜋𝑓  
energy stored power lost in one 

second 
1
𝐿𝑖2 

 𝑄 = 2𝜋𝑓 2 
0
 

 1
𝑖2 𝑅 

2 

𝑄 = 
2𝜋𝑓𝐿 

= 
𝜔𝐿 

𝑅 𝑅 

So, the quality factor may also be defined as the ratio of reactance of either inductance or 

capacitance at the resonant frequency to the circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓 =   −   
2𝜋 𝐿𝐶  𝐿2 

1 1 𝑅2 1 2 
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❖ Series resonance versus parallel resonance: 

Series resonant circuit Parallel resonant circuit 
1. Series resonant frequency is given by 

1 
𝑓𝑟 =     

2𝜋 𝐿𝐶 
independent of resistance. 

2. At resonance, the power factor is unity 

and impedance is purely resistive 

𝑍𝑟 = 𝑅 
3. At resonance, the current is maximum. 

4. At resonance, the impedance of the 

circuit is minimum. 

5. The circuit is called as acceptor circuit 

because it accepts a particular frequency 

and rejects all others. 

6. At resonance, the circuit exhibits a 

voltage magnification and it is equal to 

𝑄 − factor. 

1. Parallel resonant frequency is given by 
 

1   
   

1 𝑅2 
𝑓𝑟  = 

2𝜋 𝐿𝐶 
− 
𝐿2 

2. Power factor is also unity but the 

impedance is given by 

𝑍𝑟 = 𝐿 𝐶𝑅 
3. At resonance, the current is minimum. 

4. At resonance, the impedance of the circuit 

is maximum. 

5. The circuit is called as rejector circuit 

because it rejects only one frequency and 

accepts other. 

6. At resonance, the circuit exhibits current 

magnification and it is equal to 𝑄 − 
factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GVS Reddy, Lecturer in Physics SRINIVASA DEGREE COLLEGE, 
JAMMALAMADUGU 

 

Unit - III 53 

Chapter – 5: Alternating currents & Electromagnetic waves 
 

 

❖ Important Questions: 

1. What is RMS value of current and voltage? 

2. What is 𝑄 − factor? Write expression for 𝑄 − factor. 

3. Distinguish between series and parallel resonance. 

4. Derive an expression for current, impedance and phase angle in 𝐿𝑅 circuit with the 

help of phase diagram. 

5. Derive an expression for current, impedance and phase angle in 𝐶𝑅 circuit with the 

help of phase diagram. 

6. Explain LCR series resonant circuit. Why it is called as acceptor circuit? 

7. Explain LCR parallel resonance circuit. 

❖ Problems: 

1. An alternating current of 50Hz has maximum value of 100A. Find its value after 1 
600 

sec. 

2. A.C voltage of 180V with frequency of 50cps is connected in series with a resistance 

100Ω and a coil of inductance 0.2H. Calculate the R.M.S value of current. 

3. A  series  circuit  of 𝑅 = 25Ω and 𝐿 = 0.2H is  to  be  used  at  a  frequency of  500  Hz. 

Find the impedance. 

4. Calculate the resonant frequency of an LCR parallel resonant circuit with 𝐿 = 10 

mH, 𝐶 = 1𝜇𝐹and 𝑅 = 1Ω. 

5. A series LCR resonance circuit of resistance 2000 Ω, capacitance 1250 pF and 

inductance 20 𝜇H is connected to an alternating source of 1 MHz delivering 10V 

effective voltage. Calculate the resonant frequency and the maximum current in the 

circuit. 

6. A series resonant circuit is formed with a condenser of capacity 250 pF, a coil of 

inductance 0.16 mH and a resistance 20Ω. Calculate the frequency of resonance and 

impedance of resonance. 

7. In  a  series  RLC  circuit  𝑅 = 100Ω , 𝐿 = 0.5H and 𝐶 = 40𝜇𝐹 .  Calculate  resonant 

frequency and 𝑄 − factor. 
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❖ Introduction: 

Unit - III 

Chapter – 6: Maxwell’s equations 

Maxwell in 1862 formulated the basic laws of electricity and magnetism in the form 

of four fundamental equations. The electromagnetic field is described in terms of these set 

of four equations which are known as Maxwell’s equations. 

❖ Basic laws of electricity and magnetism: 

1. Gauss’s law of electrostatics: 

  𝐸 ∙ 𝑑 𝑆 = 
𝑞
 
𝜀0 

This is Gauss’s law of electrostatics which states that the electric flux through a 

closed surface is equal to the net charge enclosed by the surface divided by the 

permittivity constant 𝜀0. 

2. Gauss’s law of magnetism: 

  𝐵 ∙ 𝑑 𝑆 = 0 

This is Gauss’s law of magnetism. This states that the magnetic flux through a closed 

surface is zero. 

3. Faraday’s law of electromagnetic induction: 

  𝐸 ∙ 𝑑 𝑙 = − 
𝑑Φ𝐵

 

𝑑𝑡 
This is Faraday’s law of electromagnetic induction. 

This law states that an electric field is produced by changing magnetic field. 

4. Ampere’s law: 

  𝐵 ∙ 𝑑 𝑙 = 𝜇0𝑖 

This is Ampere’s law for magnetic field due to steady current. This law states that the 

amount of work done in carrying a unit magnetic pole around a closed arbitrary path 

linked with the current is 𝜇0 times the current 𝑖. 

 
❖  Maxwell’s equations (Integral and differential forms): 

Integral forms: Differential forms: 

  𝐸 ∙ 𝑑 𝑆 = 
𝑞
 
𝜀0 

div 𝐸 = 
𝜌

 
𝜀0 

or ∇ ∙ 𝐷 = 𝜌 

  𝐵 ∙ 𝑑 𝑆 = 0 div 𝐵 = 0 or ∇ ∙ 𝐵 = 0 

  𝐸 ∙ 𝑑 𝑙 = −
 𝑑Φ𝐵 

 

𝑑𝑡 
curl 𝐸 = − 

𝜕 𝐵  
 
𝜕𝑡 

or   ∇  × 𝐸   = − 
𝜕𝐵  

 
𝜕𝑡 

  𝐵 ∙ 𝑑 𝑙 = 𝜇  𝐽 + 𝜀 𝜕𝐸 curl 𝐵 = 𝜇 
 

 𝐽 + 𝜀 𝜕𝐸 or ∇ × 𝐵 = 𝜇 
 

 𝐽 + 𝜀 𝜕 𝐸  
 
 

 

0 0 𝜕𝑡 0 0 𝜕𝑡 0 0 𝜕𝑡 

 

❖ Displacement current: 

A current carrying conductor produces a magnetic field. Maxwell proved that a 

changing electric field in vacuum or in dielectric also produces a magnetic field. So, a 

changing electric field is equivalent to a current which flows as long as the electric field is 
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changing and produces the same magnetic effect as an ordinary conduction current. This 

is known as displacement current. 

Ampere’s law in vector form is ∇ × 𝐵 = 𝜇0𝑗 , where 𝑗 is current density. 

Apply divergence on both sides ∇ ∙ ∇ × 𝐵 = ∇ ∙ 𝜇0𝑗   

𝜇0 ∇ ∙ 𝑗 = 𝜇0 div 𝑗 = 0 ∵ ∇ ∙ ∇ × 𝐵 = 0  

div 𝑗 = 0, this is contradict with the equation of continuity which states that 

div 𝑗                    + 
𝜕𝜌 

= 0 where 𝜌 represents charge density. 
𝜕𝑡 

Maxwell concluded that Ampere’s law is incomplete. Ampere’s law in the form ∇ × 𝐵 = 

𝜇0𝑗  is valid only for a steady state condition and is insufficient for the case of time 

varying electric field in which the charge density varies with time, i.e., 𝜕𝜌 is not zero. 
𝜕𝑡 

Maxwell suggested that something must be added to 𝑗 . Thus 

 ∇ × 𝐵 = 𝜇0𝑗 + Something 

In vector form, the Gauss’s law is expressed as ∇ ∙ 𝐷 = 𝜌 

Differentiating with respect to time, we get ∇ ∙ 
𝜕 𝐷 

= 
𝜕𝜌

 
𝜕𝑡 𝜕𝑡 

Adding ∇ ∙ 𝑗 on both sides and rearranging 

 ∇ ∙ 𝑗 + 
𝜕𝜌 

= ∇ ∙ 𝑗 + 
𝜕 𝐷

 = 0 
𝜕𝑡 𝜕𝑡 

 ∇ ∙ 𝑗 = 0 For steady currents 

 ∇  ∙  𝑗  + 
𝜕𝐷  

  = 0 Everywhere 
𝜕𝑡 

In this way, Maxwell replaced 𝑗 in ampere’s law by 𝑗 + 
𝜕 𝐷

 . 
𝜕𝑡 

Thus, Ampere’s law becomes ∇ × 𝐵 = 𝜇0  𝑗 + 
𝜕 𝐷  

  
𝜕𝑡 

The term 𝜕𝐷
   

is called as displacement current density. 
𝜕𝑡 

 

❖  Maxwell’s wave equation or Equation of electromagnetic waves: 

Consider a homogeneous, isotropic dielectric medium in free space. Dielectric offers 

infinite resistance to the current, and hence its conductivity 𝑗 = 0. Charge density is zero 

for homogeneous isotropic medium. Hence 

𝑗  = 0, 𝜌 = 0, 𝐷   = 𝜀𝐸   and 𝐵   = 𝜇0𝜇𝑟 𝐻   

Maxwell’s equations for a dielectric become 

 ∇ ∙ 𝐸 = 0 ................ (1) 

 ∇ ∙ 𝐵 = 0 ................ (2) 

 ∇ × 𝐸 = − 
𝜕 𝐵  

 
𝜕𝑡 

 ∇ × 𝐵 = 𝜇𝜀 
𝜕 𝐸  

 
𝜕𝑡 

................ (3) 

................ (4) 

A. Equation of EM waves can be obtained by eliminating 𝐸 from eqs. (3) and (4). 

Taking curl of equation (4), we get 

 ∇  ×  ∇  × 𝐵   =  ∇  × 𝜇𝜀 
𝜕𝐸  

 
𝜕𝑡 
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 ∇  ×  ∇  × 𝐵   =  ∇  × 𝜇𝜀 
𝜕𝐸  

 
𝜕𝑡 

= 𝜇𝜀   ∇  × 
𝜕𝐸  

  
𝜕𝑡 

= 𝜇𝜀 
𝜕
 ∇ × 𝐸    
𝜕𝑡 

= 𝜇𝜀 
𝜕  
 − 

𝜕𝐵  
  [using eq. (3)] 

𝜕𝑡 

 ∇ × ∇ × 𝐵 = −𝜇𝜀 
𝜕 2 𝐵  

 
𝜕𝑡 2 

𝜕𝑡  
.............. (5) 

 ∇  ×  ∇  × 𝐵   =  ∇   ∇  ∙ 𝐵    − ∇2𝐵   

=  ∇  0  − ∇2𝐵   

= −∇2𝐵   .............. (6) 

Substituting the value of ∇ × ∇ × 𝐵 from equation (6) in eq. (5), we get 

−∇2𝐵   = −𝜇𝜀 
𝜕 2 𝐵  

 
𝜕𝑡 2 

 

............. (7) 

 
B. Equation of EM waves can be obtained by eliminating 𝐵 from eqs. (3) and (4). 

Taking curl of equation (3), we get 

 ∇  ×  ∇  × 𝐸   =  ∇  ×  − 
𝜕𝐵  

  
𝜕𝑡 

= − 
𝜕
 ∇ × 𝐵    
𝜕𝑡 

= −𝜇𝜀 
𝜕
 

𝜕𝑡 

𝜕 𝐸   
  
𝜕𝑡 

[using eq. (4)] 

 ∇ × ∇ × 𝐸 = −𝜇𝜀 
𝜕 2 𝐸  

 
𝜕𝑡 2 

 ∇  ×  ∇  × 𝐸   =  ∇   ∇  ∙ 𝐸    − ∇2𝐸   

=  ∇  0  − ∇2𝐸   

............... (8) 

= −∇2𝐸   ................ (9) 

Substituting the value of ∇ × ∇ × 𝐸 from equation (9) in eq. (8), we get 

−∇2𝐸   = −𝜇𝜀 
𝜕 2 𝐸  

 
𝜕𝑡 2 

 

............ (10) 

 
Equations (7) and (10) are called wave equations for 𝐵 and 𝐸 respectively. These 

equations have the same general form of the differential equation of wave motion. The 

general wave equation is represented by 

∇2𝑦 = 
1 𝜕 2 𝑦 

𝑣 𝜕𝑡 
............... (11) 

Where 𝑣 is the velocity of the wave. 

Comparing equations (10) and (11), we have 1 
𝑣2 

 
= 𝜇𝜀 

𝑣2 = 
1
 
𝜇𝜀 

 
 

 

∇ 𝐵 = 𝜇𝜀 2    𝜕 𝐵 2    

𝜕𝑡 2 

𝜕2𝐸   
∇2𝐸   = 𝜇𝜀 

𝜕𝑡2 
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𝑣 = 
1

 

 𝜇𝜀 

Where 𝜇 and 𝜀 are permeability and permittivity of the medium. 

Therefore, electric vector 𝐸 and magnetic field vector 𝐵 are propagating in space 

according to wave equation with velocity 𝑣 . These waves are commonly referred as 

electromagnetic waves. 

 
❖ Transverse wave nature of electromagnetic wave: 

Consider the case of electromagnetic wave in which the components of vectors E and 

B vary with one coordinate only (say 𝑥) and also with time 𝑡, i.e., 

𝐸 = 𝐸 𝑥, 𝑡 and 𝐵 = 𝐵 𝑥, 𝑡  

But ∇ ∙ 𝐸 = 0 or 𝜕𝐸𝑥 +
 𝜕𝐸𝑦 

+
 𝜕𝐸𝑧 = 0 

𝜕𝑥 𝜕𝑦 𝜕𝑧 

∴
 𝜕𝐸𝑥 = 0 or 𝐸 = constant .....................................(1) 
𝜕𝑥 𝑥 

 ∇ ∙ 𝐵 = 0 or 𝜕𝐵𝑥 +
 𝜕𝐵𝑦 

+
 𝜕𝐵𝑧 = 0 

𝜕𝑥 𝜕𝑦 𝜕𝑧 

∴
 𝜕𝐵𝑥 = 0 or 𝐵 = constant...................................... (2) 
𝜕𝑥 𝑥 

Eqs. (1) and (2) are obtained on the fact that the derivative of 𝐸 and 𝐵 with respect to 𝑦 

and 𝑧 are zero. 

𝑐𝑢𝑟𝑙 𝐸   = − 
𝜕𝐵  

 
𝜕𝑡 

𝑖 𝑗 𝑘  
∴ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 = − 

𝜕
 𝐵 𝑖 + 𝐵 𝑗 + 𝐵 𝑘   

 

𝐸𝑥 𝐸𝑦 𝐸𝑧 

𝑖 
 𝜕𝐸𝑧 −

 𝜕𝐸𝑦 
  = −𝑖

 𝜕𝐵𝑥 
 

𝜕𝑡 𝑥 𝑦 𝑧 

𝜕𝑦 𝜕𝑧 𝜕𝑡 
 𝜕𝐸𝑧 −

 𝜕𝐸𝑦 
= 0 (∵ components of 𝐸 vary only with 𝑥) 

𝜕𝑦 𝜕𝑧 
 𝜕𝐵𝑥 = 0 or 𝐵 = constant 
𝜕𝑡 𝑥 

Similarly, taking curl 𝑩, we can show that 𝐸𝑥 = constant. 

Hence, we conclude that 𝐸𝑥 and 𝐵𝑥 are constants as regards to time and space. So these 

components are static components and hence no part of wave motion. Thus, 

𝐸 = 𝐸𝑦 𝑗 + 𝐸𝑧 𝑘  

𝐵 = 𝐵𝑦 𝑗 + 𝐵𝑧 𝑘  

𝑥 − direction is the propagation of the wave. Both these vectors are perpendicular to the 

direction of propagation. Hence, Maxwell’s electromagnetic waves are transverse in 

nature. 

 
❖ Production and detection of electromagnetic waves (Hertz experiment): 

Hertz demonstrated the production of EM waves experimentally. The experimental 

setup is shown in the fig (a). It consist A and B are two metal square plates placed at a 

certain distance. These plates act as the plate of a capacitor. The opposite faces of A and 

B are connected to highly polished brass spheres C and D through thick wires. The brass 
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spheres are called as buttons or knobs and are separated by a small gap. An induction coil 

is connected across the wires attached to the plates of the capacitor. 

 

 

The plates A and B form a capacitor and the thick connecting wires serve as inductor. 

This system is equivalent to a series LC circuit. 

Production: 

When the D.C voltage supplied by induction coil becomes sufficiently high, the air 

gap between C and D gets ionized and conducting. The electrical discharge takes places 

between the two plates A and B. The oscillatory discharge through conducting air 

produces a train of electromagnetic waves. 

Detection: 

Hertz employed a thick wire ring connected to polished brass spheres E and F with a 

small gap as shown in fig (b). The brass spheres serves as the plates of a capacitor and the 

connecting wires as inductor. This setup acts as LC circuit with its natural frequency is 

given  by 𝑓 = 
1
 

2𝜋 𝐿𝐶 
. When the electromagnetic waves passing through this circuit, an 

alternating e.m.f is induced round the wire. When the natural frequency of the detector 

becomes equal to the frequency of EM waves produced between C and D, resonance 

occurs. As a result, the amplitude of oscillations in the detector circuit increases and a 

spark is produced in the air gap of spheres E and F of the detector. In this way, the 

electromagnetic waves are detected. 
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❖ Important questions: 

1. Explain displacement current. 

2. Write Maxwell’s equations in integral and differential forms. 

3. Show that electromagnetic waves are transverse in nature. 

4. Derive the Maxwell’s electromagnetic wave equation. Show that wave velocity is 

equal to 𝑣 = 
1

 

 𝜇𝜀 

5. Explain Hertz experiment to produce and detect electromagnetic waves. 
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❖ Introduction: 

Unit – IV 

Chapter – 7: Basic electronics 

• Semiconductor: A substance which has resistivity in between conductors and insulators 

is known as semiconductor. 

Ex: Silicon, Germanium, Selenium, Carbon etc. 

➢ Semiconductors have negative temperature coefficient of resistance i.e., the 

resistance of a semiconductor decreases with the temperature and vice – versa. 

➢ When a suitable metallic impurity is added to a semiconductor, its current conducting 

properties change appreciably. 

Semiconductors may be classified as 

 

 

 

 

 
❖ Intrinsic or Pure semiconductor: A semiconductor in an extremely pure form is 

known as intrinsic semiconductor. 

Ex: Pure crystals like silicon, germanium are called intrinsic semiconductors. 

➢ In an intrinsic semiconductor, the number of free electrons is always equal to the 

number of holes. 

➢ The electrical conduction through a semiconductor is by both electrons and holes. 

➢ The total current inside the semiconductor is sum of the currents due to free electrons 

and holes. 

 
❖ Extrinsic semiconductor: At room temperature, the intrinsic semiconductor has little 

current conduction capability. The electrical conductivity of pure semiconductor can be 

increased by adding some impurity. 

The semiconductor in an impure form is called an extrinsic semiconductor. 

➢ The process of adding impurities to a semiconductor is known as doping. 

➢ If a pentavalent impurity (having 5 valance electrons) is added to the semiconductor, 

a large number of free electrons are produced in the semiconductor. 

Ex: Phosphorous (Z = 15), Arsenic (Z = 33), Antimony (Z = 51), Bismuth (Z = 83) 

etc are pentavalent impurities. 

 

 

 
 

p – type n – type 

Extrinsic 

Or 

Impure Semiconductors 
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➢ Pentavalent impurities are called donor atoms because they donate one electron to the 

pure semiconductor. 

➢ If a trivalent impurity (having 3 valance electrons) is added to the semiconductor, it 

creates large number of holes in the semiconductor. 

Ex: gallium (Z = 31), Indium (Z = 49) 

➢ Trivalent impurities are called acceptor atom because it accepts one electron from 

semiconductor atom. 

➢ Depending upon the type of impurity added, the extrinsic semiconductors can be 

divided into two classes: 

(i) n – type semiconductor 

(ii) p – type semiconductor 

 
❖ n – type semiconductor: When a small 

amount of pentavalent impurity is added to 

a pure semiconductor, it is known as n – 

type semiconductor. 

The addition of pentavalent impurity 

provides a large number of free electrons. 

The current conduction in an n – type 

semiconductor is mainly by free electrons. 

In n – type semiconductor majority charge 

carriers are electrons and minority charge carriers are holes. 

 
❖ p – type semiconductor: When a small 

amount of trivalent impurity is added to a 

pure semiconductor, it is known as p – type 

semiconductor. 

The addition of trivalent impurity 

provides a large number of holes. The 

current conduction in p – type 

semiconductor is mainly by holes. In p – 

type semiconductor majority charge 

carriers are holes and minority charge 

carriers are electrons. 

 
❖ pn – junction diode: 

When a p – type material is suitably joined 

to n – type material, a pn – junction is formed. 

This is a two terminal device. 

Diode Symbol: The diode symbol is shown in 

fig. The p – type is referred as anode and n – 

type is referred as cathode. 
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Construction: 

At the instant of pn – 

junction formation, the 

free electrons near the 

junction in the 𝑛 region 

diffuse across the 

junction into the p 

region and combine with 

holes near the junction. 

This creates a layer of 

positive charges 

(pentavalent ions) in 𝑛 

region and a layer of 

negative charges 

(trivalent ions) in 𝑝 

region. These two layers of positive and negative charges form the depletion region (or 

depletion layer). Once pn – junction is formed and depletion layer created, the diffusion 

of free electron stops. In other words, the depletion region acts as a barrier to the further 

movement of free electrons across the junction. The positive and negative charges set up 

an electric field. 

The electric field is a barrier of free electrons in the 𝑛 – region. A potential difference 

across the depletion layer is called barrier potential 𝑉0 . The barrier potential depends 

upon the several factors including the type of semiconductor material, the amount of 

doping and temperature. 

Working: 

a. Forward bias: When an external 

voltage is applied to pn – junction in 

such a direction that it cancels the 

potential barrier  and permits the 

current flow is called as forward bias. 

To apply forward bias, connect positive 

terminal of the battery to p – type and 

negative terminal to n – type as shown 

in fig. The applied forward voltage 

setup an electric field which acts against 

the field due to potential barrier. 

(i) The potential barrier is reduced and at some forward voltage (0.1 to 0.3V), it is 

eliminated altogether. 

(ii) The junction offers low resistance (called forward resistance 𝑅𝑓 ) to current flow. 

(iii)Current flows in the circuit due to the setup of low resistance path. The 

magnitude of current depends upon the applied forward voltage. 

b. Reverse bias: When an external voltage is applied to pn – junction in such a 

direction that it increases the potential barrier then it is called as reverse bias. 
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To apply reverse bias, connect 

negative terminal of the battery to p – 

type and positive terminal to n – type 

as shown in fig. 

(i) The potential barrier is increased. 

(ii) The junction offers very high 

resistance (called reverse 

resistance 𝑅𝑟 ) to current flow. 

(iii) No current flows in the circuit 

due to the setup of high  

resistance path. 

Thus, pn – junction is a unidirectional (one way) device which offers a low resistance 

when forward biased and behaves like insulator when reverse biased. 

 
❖ Volt – Ampere characteristics or 𝑽 − 𝑰 characteristics: 

𝑉 − 𝐼 characteristics of a pn junction is a curve between voltage across the junction 

and the circuit current. Voltage 

is taken along 𝑥 − axis and 

current along 𝑦 − axis. 

The characteristics are studied 

under the following two heads: 

(i) Forward bias 

(ii) Reverse bias 

(i) Forward bias: In forward 

bias, p – type is connected 

to the positive terminal 

while the n – type is 

connected to the negative 

terminal of a battery. 

The applied voltage of the 

diode can be varied with the 

help of potential divider. At some forward voltage (0.3 for Ge and 0.7 V for Si) the 

potential barrier altogether is eliminated and current stats flowing. This voltage is 

known as Threshold voltage 𝑉𝑡𝑕 or cut-in voltage or knee voltage. 

As the forward voltage increases beyond threshold voltage, the forward current rises 

exponentially. The graph is shown in the fig. 

 
(ii) Reverse bias: In reverse bias, p – type is connected to the negative terminal while n 

– type is connected to the positive terminal of a battery. 

The reverse voltage of the diode can be varied with the help of potential divider. In 

reverse bias, the junction resistance becomes very high and practically no current 

flows through the circuit. But in actual practice, a small reverse current of order 𝜇𝐴 

flows in the circuit due to minority carriers. As the reverse voltage is increases from 
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zero, the reverse current quickly rises to its maximum or saturation value. If the 

reverse voltage is further increased, the kinetic energy of electrons becomes so high 

that they knockout electrons from the semiconductor atoms. At this stage breakdown 

of junction occurs and the junction is permanently destroyed. There is a sudden rise 

of reverse current. 

 
❖ Zener diode: 

Zener diode is a reverse biased 

heavily – doped silicon (or germanium) 

pn – junction diode which is operated  

in the breakdown region. Due to the 

higher temperature and current 

capability, silicon is preferred in 

comparison to germanium. The symbol 

of a zener diode is shown in fig. 

 
Biasing of zener diode: 

1. Forward biasing: For forward biasing, the anode is connected to positive terminal of 

battery while the cathode is connected to negative terminal of battery. The forward is 

shown in fig. This biasing is generally not used. 

2. Reverse biasing: For reverse biasing, the anode is connected to negative terminal 

while the cathode is connected to positive terminal. 

𝑽 − 𝑰 characteristics of zener diode: 

The 𝑉 − 𝐼 characateristic curve is 

shown in fig. When the reverse 

voltage applied to pn – junction is 

increased from zero, the current 

remains very small over a long range. 

When the reverse voltage is made 

very high, reverse current increases 

suddenly to a large value breaking the 

covalent bonds near the junction. 

There are two mechanisms of the 

breakdown: 

(i) Zener breakdown: Zener 

breakdown takes place in very 
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thin junction, i.e., when both sides of junctions are very heavily doped and 

consequently depletion layer is narrow. When a small reverse bias voltage is applied, 

a reverse saturation current (zener current) is produced. This current is independent 

of the applied voltage and depends only on the external resistance. 

(ii) Avalanche breakdown: This type of breakdown takes place when both sides of 

junction are lightly doped and consequently the depletion layer is large. 

This breakdown occurs at higher reverse voltages. 

 
❖ Transistor: 

A transistor is simply a sandwich of one type of semiconductor material between two 

layers of the other type. There are two types of transistors. 

1. NPN transistor 

2. PNP transistor 

1. NPN transistor: When a layer of P type material is sandwiched between two layers of 

N type material, the transistor is known as NPN transistor. 

 

2. PNP transistor: When a layer of N type material is sandwiched between two layers of 

P type material, the transistor is known as PNP transistor. 

 

A transistor (NPN or PNP) has the following sections: 

(i) Emitter: This forms the left hand section or region of the transistor. The main 

function of this region is to supply majority charge carriers (either electrons or holes) 

to the base and hence it is more heavily doped in comparison to other regions. 

(ii) Base: The middle section of the transistor is known as base. This is very lightly 

doped and is very thin (10-6 m) as compared to either emitter or collector so that it 

may pass most of the injected charge carriers to the collector. 
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(iii) Collector: The right hand section of the transistor is called as collector. The main 

function of the collector is to collect majority charge carriers through the base. This  

is moderately doped. 

 
❖ Transistor biasing: 

In transistor biasing, the emitter – base junction is always forward biased while the 

collector – base junction is always reverse biased. For this purpose, a battery VEE is 

connected between emitter and base while a battery VCC is connected between collector 

and base. 

PNP transistor: 

➢ Emitter – base junction of PNP is 

forward biased by connecting the 

positive terminal of VEE to emitter and 

negative terminal to base. 

➢ Collector – base junction of PNP is 

reverse biased by connecting the 

negative terminal of VCC to collector 

while positive terminal to base. 

NPN transistor: 

➢ Emitter – base junction of NPN is 

forward biased by connecting the 

negative terminal of VEE to emitter and 

positive terminal to base. 

➢ Collector – base junction of NPN is 

reverse biased by connecting the 

positive terminal of VCC to collector 

while negative terminal to base. 

The forward biasing of emitter – base 

junction allows a low resistance for emitter circuit and reverse biasing of collector base 

junction provides high resistance in the collector circuit. In a transistor, a weak signal is 

introduced in low resistance circuit and the output is taken from high resistance circuit.  

So a transistor transfers a signal from low resistance to high resistance. 

 
❖ Operation of PNP transistor: 

Consider a PNP transistor with emitter – base junction as forward biased and collector 

– base junction reverse biased. The operation of PNP transistor is as follows: 

The holes of P region (emitter) are repelled by the positive terminal of battery VEE 

towards the base. The potential barrier at emitter junction is reduced as it is forward 

biased and hence the holes cross this junction and penetrate into N region. This 

constitutes the emitter current 𝐼𝐸. The width of the base region is very thin and it is lightly 

doped and hence only 2 to 5% of the holes recombine with the free electrons of N region. 

This constitutes the base current 𝐼𝐵 which is very small. The remaining holes (95% to 

98%) are able to drift across the base and enter the collector region. They are swept by the 

negative collector voltage VCC. They constitute the collector current. 
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1. Current conduction within 

PNP transistor takes place 

by hole conduction from 

emitter to collector, i.e., 

majority charge carriers in 

a PNP transistor are holes. 

2. The collector current is 

slightly less than the 

emitter current. 

3. The collector current is a 

function of emitter  

current, i.e., with the 

increase or decrease in the 

emitter current, a corresponding change in collector current is observed. 

Thus, only the hole current plays an important role in the operation of PNP transistor. 

Therefore, 𝐼𝐸 = 𝐼𝐵 + 𝐼𝐶 

 
❖ Operation of NPN transistor: 

Consider a NPN transistor 

with emitter – base junction as 

forward biased and collector – 

base junction reverse biased. The 

operation of NPN transistor is as 

follows: 

The electrons of N region 

(emitter) are repelled by the 

negative terminal of the battery 

VEE towards the base. The 

potential barrier at emitter 

junction is reduced as it is 

forward biased and hence the 

electrons cross this junction and penetrate into P region. A few electrons combine with 

the holes in P region and are lost as charge carriers. Now the electrons in N region 

(collector region) readily swept up by the positive collector voltage VCC. 

For every electron flowing out the collector and entering the positive terminal of 

battery VCC, an electron from the negative emitter battery terminal enters the emitter 

region. In this way electron conduction takes place continuously so long as the two 

junctions are properly biased. 

The current conduction in NPN transistor is carried out by the electrons. 

Therefore, 𝐼𝐸 = 𝐼𝐵 + 𝐼𝐶 
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❖ Transistor circuit configurations: 

There are three types of transistor circuit configurations. 

(1) Common – base (CB) 

(2) Common – emitter (CE) 

(3) Common – collector (CC) 

Here, the term ‘Common’ is used to denote the transistor lead which is common to the 

input and output circuits. This is because when a transistor is connected in a circuit, four 

terminals are required (two for input and two for output) while a transistor has only three 

terminals. This difficulty is removed by making one terminal of the transistor ‘common’ 

to both input and output terminals. The common terminal is generally grounded. 

The different configurations of a PNP transistor are shown in fig. 
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❖ Common base configuration: 

In CB configuration, input 

signal is  applied between 

emitter and base while the 

output is taken from collector 

and base. As the base is 

common to input and output 

circuits,  it  is called as 

common base configuration. 

Current amplification factor 

 𝜶  

(i) When no signal is applied 

The ratio of the collector 

current to the emitter current is called 𝛼𝑑𝑐 of a transistor. 

𝛼𝑑𝑐 =
 −𝐼𝐶  

𝐼𝐸 

− indicates 𝐼𝐶 flows out of the transistor and 𝐼𝐸 flows in. 

𝐼𝐶 = 𝛼𝐼𝐸 

𝐼𝐵 = 𝐼𝐸 − 𝐼𝐶 

𝐼𝐵 = 𝐼𝐸 − 𝛼𝐼𝐸 = 𝐼𝐸 1 − 𝛼  

(ii) When signal is applied 

The ratio of change in collector current to the change in emitter current at constant 

collector base voltage is defined as current amplification factor. 

𝛼𝑎𝑐 =
 −∆𝐼𝐶  

∆𝐼𝐸 

For all physical purposes 𝛼𝑑𝑐 = 𝛼𝑎𝑐 = 𝛼 and practical values in commercial transistors 

range from 0.9 to 0.99 

Total collector current 

Total collector current consists of two parts: 

(i) The current produced by majority charge carriers and its value is 𝛼𝐼𝐸. 

(ii) The leakage current 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 . This is due to the minority charge carriers across base – 

collector junction. This is named as 𝐼𝐶𝐵𝑂 , i.e., collector base current with emitter 

open. 

∴ Total collector current 𝐼𝐶 = 𝛼𝐼𝐸 + 𝐼𝐶𝐵𝑂 

 
❖ Common – emitter configuration: 

In CE configuration, the input signal is 

applied between base and emitter and the 

output is taken from collector and emitter. 

As the emitter is common to input and output 

circuits, it is called as common emitter 

configuration. 

Current amplification factor 𝜷 : 

(i) When no signal is applied 
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The ratio of collector current to the base current called dc beta 𝛽𝑑𝑐 of transistor. 

𝛽𝑑𝑐 = 𝛽 =
 𝐼𝐶 

 

𝐼𝐵 

(ii) When signal is applied 

The ratio of change in collector current to the change in base current is defined as 

base current amplification factor. 

𝛽𝑎𝑐 = 𝛽 =
 ∆𝐼𝐶  

∆𝐼𝐵 

In all transistors, the base current is less than 5% of the emitter current. The value of 

𝛽 ranges from 20 to 500. 

Total collector current 

∴ Total collector current 𝐼𝐶 = 𝛽𝐼𝐵 + 𝐼𝐶𝐸𝑂 ............................. (1) 

𝐼𝐶𝐸𝑂 is the leakage current and is called collector to emitter current with base open. 

We know that 𝐼𝐸 = 𝐼𝐵 + 𝐼𝐶 and 𝐼𝐶 = 𝛼𝐼𝐸 + 𝐼𝐶𝐵𝑂 

𝐼𝐶 = 𝛼 𝐼𝐵 + 𝐼𝐶 + 𝐼𝐶𝐵𝑂 

𝐼𝐶 1 − 𝛼 = 𝛼𝐼𝐵 + 𝐼𝐶𝐵𝑂 

𝐼𝐶 = 
𝛼 1−𝛼 

𝐼𝐵 + 
1 

1−𝛼 
𝐼𝐶𝐵𝑂 .............. (2) 

Comparing (1) & (2), we get 

𝛽 = 
𝛼 

1−𝛼 and 𝐼𝐶𝐸𝑂 = 
1 

 1−𝛼  
𝐼𝐶𝐵𝑂 

 

❖ Common – collector configuration: 

In CC configuration, the input signal 

is applied between base and collector  

and output is taken from the emitter. As 

collector is common to input and output 

circuits, it is called as common collector 

circuit. 

Current amplification factor 𝜸 : 

(i) When no signal is applied 

The ratio of emitter current to the 

base current is called as dc gamma 

𝛾𝑑𝑐 of the transistor. 

𝛾𝑑𝑐 = 𝛾 =
 𝐼𝐸 

 

𝐼𝐵 

(ii) When signal is applied 

The ratio of change in emitter current to the change in base current is known as 

current amplification factor 𝛾. 

𝛾 =
 ∆𝐼𝐸  

∆𝐼𝐵 

Total emitter current 

We know that 𝐼𝐸 = 𝐼𝐵 + 𝐼𝐶 and 𝐼𝐶 = 𝛼𝐼𝐸 + 𝐼𝐶𝐵𝑂 

𝐼𝐸 = 𝐼𝐵 + 𝛼𝐼𝐸 + 𝐼𝐶𝐵𝑂  

= 𝐼𝐵 + 𝛼𝐼𝐸 + 𝐼𝐶𝐵𝑂 

𝐼𝐸 1 − 𝛼 = 𝐼𝐵 + 𝐼𝐶𝐵𝑂 
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𝐼  =
   𝐼𝐵     

+
 𝐼𝐶𝐵𝑂  

𝐸 1−𝛼 1−𝛼  

𝐼𝐸 = 1 + 𝛽 𝐼𝐵 + 1 + 𝛽 𝐼𝐶𝐵𝑂 

∴ 
1 

 1−𝛼  
= 1 + 𝛽  

 

❖ Relation between 𝜶, 𝜷 and 𝜸: 

1. Relation between 𝛼 and 𝛽 

𝛼 =
 𝐼𝐶 

and 𝛽 =
 𝐼𝐶 

 

𝐼𝐸 𝐼𝐵 

𝐼𝐸 = 𝐼𝐵 + 𝐼𝐶 or 𝐼𝐵 = 𝐼𝐸 − 𝐼𝐶 

𝛽 =
 𝐼𝐶 

=
 𝐼𝐶 𝐼𝐸 

= 
𝛼 

𝐼𝐸 −𝐼𝐶 

𝛽 = 
𝛼 

1−𝛼 

1− 𝐼𝐶 𝐼𝐸   1−𝛼  

............. (1) 

𝛽 1 − 𝛼 = 𝛼 or 𝛽 − 𝛽𝛼 = 𝛼 

𝛽 = 𝛼 1 + 𝛽  

𝛼 = 
𝛽

 
 1+𝛽  

1 − 𝛼 = 
1
 

1+𝛽 

2. Relation between 𝛾 and 𝛼 

We know that 𝛾 =
 𝐼𝐸 

and 𝛼 =
 𝐼𝐶 

 

 

 
.............. (2) 

.............. (3) 

𝐼𝐵 𝐼𝐸 

𝐼𝐵 = 𝐼𝐸 − 𝐼𝐶 

𝛾 =
   𝐼𝐸     

= 
1 

= 
1 

 

 
.............. (4) 

𝐼𝐸 −𝐼𝐶 1− 𝐼𝐶 𝐼𝐸 1−𝛼 

3. Relation between 𝛾 and 𝛽 

From equation (3),  1 − 𝛼 = 
1
 

 1+𝛽  

Substituting this value in equation (4), 𝛾 = 
1

 
1−𝛼 

 
 

 
= 1 + 𝛽  

 

❖ Characteristics of common emitter transistor circuit: 

Consider the circuit arrangement for plotting the characteristics of a PNP transistor in 

CE configuration. 

We consider the following characteristics 
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(1) Input characteristics 

(2) Output characteristics 

1. Input characteristics: 

The curve between base current 𝐼𝐵 and base – emitter voltage 𝑉𝐵𝐸 at constant 

collector – emitter voltage 𝑉𝐶𝐸 represents 

the input characteristic. 

For plotting the input  

characteristic, the collector – emitter 

voltage 𝑉𝐶𝐸 is kept fixed. The base emitter 

voltage 𝑉𝐵𝐸 is varied with the help of 

potential divider 𝑅1 and the base current 

𝐼𝐵 is noted for each value of 𝑉𝐵𝐸. 

A graph of 𝐼𝐵 against 𝑉𝐵𝐸 is drawn. The 

curve so obtained is known as input 

characteristic. 

Input resistance: The ratio of change in 

base emitter voltage ∆𝑉𝐵𝐸  to the change 

in base current ∆𝐼𝐵 at constant collector 

– emitter voltage 𝑉𝐶𝐸 is defined as input 

resistance. This is defined by 𝑟𝑖. 

𝑟 =
 ∆𝑉𝐵𝐸  

 
𝑖                ∆𝐼𝐵 𝑉𝐶𝐸 =𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2. Output characteristics: 

The curve between collector current 𝐼𝐶 and collector emitter voltage 𝑉𝐶𝐸 at 

constant base current 𝐼𝐵 represents the output characteristic. 

For plotting output characteristic, the base current 𝐼𝐵 is kept fixed. The collector 

emitter voltage 𝑉𝐶𝐸 is varied with the help of potential divider 𝑅2 and collector 

current 𝐼𝐶 is noted for each value of 𝑉𝐶𝐸. 

A graph of 𝐼𝐶 against 𝑉𝐶𝐸 is drawn. The curve so obtained is known as output 

characteristic. 

(i) In the active region, for small values of base current, the effect of collector 

voltage over collector current is small while for large base current values this 

effect increases. 

(ii) When 𝑉𝐶𝐸 has very low value, the transistor is 

said to be saturated and it operates in the 

saturation region. In this region, the change in 

base current 𝐼𝐵 does not produce a 

corresponding change in collector current 𝐼𝐶. 

(iii) In the cutoff region, a small amount of collector 

current flows even when base current 𝐼𝐵 = 0. This 

is called 𝐼𝐶𝐸𝑂 . Since, main collector current is zero, 

the transistor is said to be cutoff. Output 

resistance: The ratio of change in collector 
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– emitter voltage ∆𝑉𝐶𝐸 to the change in collector current ∆𝐼𝐶 at constant base  

current 𝐼𝐵 is defined as output resistance. This is denoted by 𝑟0. 

𝑟 =
 ∆𝑉𝐶𝐸  

 
0      ∆𝐼𝐶 𝐼𝐵 =𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

❖ Hybrid parameters – Determination of hybrid parameter from transistor 

characteristics: 

(1) Input impedance 𝒉𝒊𝒆 : The input 

impedance is defined as the ratio of change 

in the base – emitter voltage to the change 

in base current at constant collector – 

emitter voltage 𝑉𝐶𝐸  
Mathematically, 𝑕 ∆𝑉𝐵𝐸 

 

𝑖𝑒 ∆𝐼𝐵 𝑉𝐶𝐸 

 

Units: Ohms (Ω) 

Determination: 𝑕𝑖𝑒 can be determined from 

the forward characteristic curves of a 

transistor. Consider a forward curve 

between 𝑉𝐵𝐸 and 𝐼𝐵 at constant 𝑉𝐶𝐸 . Now 

take slope of curve as shown in fig. 

In fig ∆𝑉𝐵𝐸 = 𝐴𝐵; ∆𝐼𝐵 = 𝐶𝐷 

∴ 𝑕𝑖𝑒 = 
𝐴𝐵 

Ω
 

𝐶𝐷 

(2) Reverse voltage ratio 𝒉𝒓𝒆 : The reverse 

voltage ratio 𝑕𝑟𝑒 is defined as the ratio of 

change in base – emitter voltage to the 

collector emitter voltage at constant base 

current 𝐼𝐵. 
Mathematically, 𝑕  ∆𝑉𝐵𝐸  

 
𝑟𝑒 = 

∆𝑉
 

Units: No units 

 
𝐶𝐸 

 
𝐼𝐵 

Determination: 𝑕𝑟𝑒 can also be determined 

from the input characteristic curve of a 

transistor. Consider two forward 

characteristic curves at different values of 

𝐼𝐵 on the characteristic curves. 

From graph, 

∆𝑉𝐶𝐸 =  𝑉𝐶𝐸 2 −  𝑉𝐶𝐸 1 

∆𝑉𝐵𝐸 =  𝑉𝐵𝐸 2 −  𝑉𝐵𝐸 1 

∴ 𝑕𝑟𝑒 = 
 𝑉𝐵𝐸  2 − 𝑉𝐵𝐸 1 

 𝑉𝐶𝐸  2 − 𝑉𝐶𝐸 1 

(3) Forward current ratio  𝒉𝒇𝒆 : The forward current ratio  𝑕𝑓𝑒  is defined as the ratio 

of change in collector current to the change in base current at constant collector 

emitter voltage. 
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Mathematically, 𝑕 = 
∆𝐼𝐶   

 

𝑓𝑒 
 

Units: No units 

∆𝐼𝐵 𝑉𝐶𝐸 

Determination: 𝑕𝑓𝑒 can be determined 

from the current characteristics curves 

of a transistor. Consider two output 

characteristic curves of different input 

current values of 𝐼𝐵. Draw a line from 

a particular value of 𝑉𝐶𝐸 on the 

characteristic curves from fig. 

∆𝐼𝐶 =  𝐼𝐶 2 −  𝐼𝐶 1 

∆𝐼𝐵 =   𝐼𝐵 2 −  𝐼𝐵 1 

∴ 𝑕𝑓𝑒 = 
 𝐼𝐶  2 − 𝐼𝐶 1 

 𝐼𝐵  2 − 𝐼𝐵 1 

(4) Output admittance    𝒉𝒐𝒆  : The 

output admittance 𝑕𝑜𝑒 is defined as the 

ratio of change in collector current to the 

change in collector emitter voltage at 

constant input current 𝐼𝐵. 

Mathematically, 𝑕 = 
∆𝐼𝐶    

 

 
Units: mho 

𝑜𝑒 ∆𝑉𝐶𝐸 𝐼𝐵 

Determination: 𝑕𝑜𝑒 can be determined 

from the output characteristic curves of a 

transistor. Consider an output curve 

between 𝑉𝐶𝐸 and 𝐼𝐶 at a particular value of 

input current 𝐼𝐵 

In fig, ∆𝐼𝐶 = 𝐴𝐵 

∆𝑉𝐶𝐸 = 𝐶𝐷 

∴ 𝑕𝑜𝑒 = 
𝐴𝐵 

Ω−1 

𝐶𝐷 

 

❖ Transistor as an amplifier: 

Consider the basic circuit of a 

transistor amplifier. Here, the 

weak signal is applied between 

emitter – base circuit and the 

output is taken across the load 

resistor 𝑅𝐿 connected in the 

collector circuit. 

A small change in signal 

voltage produces an appreciable 

change in emitter current because the input circuit has low resistance. Now, due to the 

transistor action, the change in emitter current causes same change in collector current. 
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When the collector current flows through the load resistance 𝑅𝐿 , a large voltage is 

developed across it. In this way, a weak signal is amplified. 

Let a small voltage change ∆𝑉𝑖 between emitter and base causes a relatively large 

emitter – current change ∆𝐼𝐸. 

𝛼 =
 ∆𝐼𝐶  

∆𝐼𝐸 

∆𝐼𝐶 = 𝛼∆𝐼𝐸 

The change in output voltage across the load resistor ∆𝑉0 = 𝑅𝐿 × ∆𝐼𝐶 

= 𝑅𝐿 × 𝛼∆𝐼𝐸 

The voltage amplification 𝐴 =
 ∆𝑉0

 

∆𝑉𝑖 

Will be greater than unity and the transistor acts as an amplifier. If the dynamic resistance 

of the emitter junction is 𝑟𝑒 , then ∆𝑉𝑖 = 𝑟𝑒 × ∆𝐼𝐸 

𝐴 =
 𝑅𝐿×𝛼∆𝐼𝐸  

𝑟𝑒 ×∆𝐼𝐸 

𝐴 =
 𝛼𝑅𝐿  

𝑟𝑒 

Voltage gain 𝑨𝑽 : 

This is defined as the ratio of change in output voltage ∆𝑉𝐶𝐸 to the change in input 

voltage ∆𝑉𝐵𝐸 when transistor is connected in common emitter configuration. 

𝐴
𝑉 

=
 ∆𝑉𝐶𝐸  

∆𝑉𝐵𝐸 

=  
Change  in output  current   ×effective   load Change  in input  current   ×input  resistance 

=
 ∆𝐼𝐶 × 𝑅𝐿  

∆𝐼𝐵 × 𝑅𝑖 

 𝑅 
= 𝛽   

𝑅𝑖 

Power gain 𝑨𝑷 : 

This is defined as the ratio of output signal power to input power signal. 

𝐴  = 
 ∆𝐼𝐶 2 × 𝑅𝐿 

=  
∆𝐼𝐶  ∆𝐼𝐶 × 𝑅𝐿 

 

𝑝      ∆𝐼𝐵  2 × 𝑅 ∆𝐼𝐵 

    
∆𝐼𝐵 

× 𝑅𝑖 

= 𝛽 × 𝐴𝑉 

Power gain = current gain × voltage gain 

 
❖ Important Questions: 

1. What is a pn – diode? Explain its working. 

2. Draw the 𝑉 − 𝐼 (or 𝐼 − 𝑉) characteristics of a P – N junction diode and explain them 

3. What is a zener diode? Explain the operation of a zener diode. 

4. Draw and explain 𝑉 − 𝐼 characteristics of zener diode. 

5. Explain the operation (or working) of PNP transistor. 

6. Explain the operation (or working) of NPN transistor. 

7. Explain the CE characteristics of a transistor. 

8. Describe CB, CE and CC configurations of a transistor. 

9. Describe transistor hybrid parameters 

10. How does transistor work as amplifier? 
 

 

 

 

 

 
 

𝐿  
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❖ Introduction: 

Unit – V 

Digital electronics 

The digital electronics is a branch of electronics which deals with the generation, 

processing and storage of digital signals. The digital electronics was first invented by 

George Boole. The algebra which is used in digital electronics is called as Boolean 

algebra. In digital electronics, any information can be represented in terms of 0’s and 1’s. 

It is represented by a bit. The digital operations are two state operations. These two states 

are expressed as 

 

 

 

 

 
❖ Some basic terms: 

HIGH – LOW 

ON – OFF 

TRUE – FALSE 

YES – NO 

1 – 0 

1. Number system: A number system is a code. For each distinct quantity there is an 

assigned symbol. Hence a number system relates quantities and symbols. 

2. Base or Radix: It is the number of digits or basic symbols in a number system. The 

decimal system has a base ten because it uses ten digits. 

3. Bit: It is an abbreviated form of binary digit. 

1100 – four binary digits or 4 bits. 

Note: 1 nibble = 4 bits 

1 byte = 8 bits 

 
❖ Number systems: 

In digital electronics, we use different types of number systems. They are 

1. Decimal number system (0 to 9) 

2. Binary number system (0 or 1) 

3. Octal number system(0 to 7) 

4. Hexadecimal number system (0 to 9, A, B, C, D, E, F) 

1. Decimal number system: 

➢ The decimal system has a radix or base of 10. 

➢ It contains 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

➢ The position value (or weights) in the system are powers of ten. 

Examples: 

8765 = 8 × 103 + 7 × 102 + 6 × 101 + 5 × 100 

5 – Least significant digit (LSD) 

8 – Most significant digit (MSD) 

12.91 = 1 × 101 + 2 × 100 + 9 × 10-1 + 1 × 10-2 

2. Binary number system: 

➢ The binary number system has a base or radix of 2. 

➢ It contains two digits: 0 and 1 

➢ The position value (or weight) in the system are powers of 2. 
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Examples: 

(1001)2 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = (9)10 

Extreme right digit – Least significant bit (LSB) 

Extreme left digit – Most significant bit (MSB) 

(1101.11)2 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2-1 + 1 × 2-2 

= 8 + 4 + 0 + 1 + 0.5 + 0.25 = (13.25)10 

3. Octal number system: 

➢ The octal system has a base or radix of 8. 

➢ It contains 8 digits: 0, 1, 2, 3, 4, 5, 6, 7. 

➢ The position value (or weights) in the system are powers of 8. 

Ex: (258)8 = 2 × 82 + 5 × 81 + 8 × 80 

= 2 × 64 + 40 + 8 = (176)10 

4. Hexadecimal number system: 

➢ Hexadecimal system has a base or radix of 16. 

➢ It contains 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

➢ The position value (or weights) in the system is powers of 16. 

Examples: 

(1F)16 = 1 × 161 + 15 × 160 

= 16 + 15 = (31)10 

❖ Decimal to binary conversion: 

Decimal number to binary number: 

Step 1: Divide progressively the decimal number by 2 and write down the remainder after 

each division. 

Step 2: Continue this process till you get quotient of 0 and remainder 0 or 1. 

Step 3: The remainders taken in the reverse order form the binary number. 

This method is called double – dabble method because it requires successive divisions by 

2. 

Example: convert the decimal number 37 to its equivalent binary number. 

 
(LSB) 

 
(100101)2 

 

 
0 - 1 (MSB) 

(37)10 = (100101)2 

Decimal fraction to binary number: 

When a decimal number is a fraction, its binary equivalent is obtained by multiplying the 

number continuously by 2, recording each time a carry in its integer position. 

Example: convert 0.435 into binary number 

0.435 × 2 = 0.870 with a carry of 0 (MSB) 

0.870 × 2 = 1.74 = 0.74 with a carry of 1 

0.74  × 2 = 1.48 = 0.48 with a carry of 1 
 

 

 

2 37 

2 18 - 1 

2 9 - 0 

2 4 - 1 

2 2 - 0 

2 1 - 0 
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0.48 × 2 = 0.96 with a carry of 0 (LSB) 

(0.435)10 = (0.11)2 
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❖ Binary to decimal conversion: 

The conversion of a binary number into decimal equivalent is somewhat an easy 

process. 

The decimal equivalent is obtained by multiplying the individual digits by the ascending 

powers of 2 (20, 21, 22, ..... ) moving from right to left and then adding them. 

Example: 

1101 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 

= 8 + 4 + 0 + 1 

= 13 

(1101)2 = (13)10 

To convert binary fraction into its decimal equivalent we multiply each digit in the 

fraction successively 2-1, 2-2, 2-3, .... 

Example: 

0.1011 = 1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 

= 1 + 0 + 1 + 1 
2 8 16 

= 
8+0+2+1 

= 
11 

16 16 

= 0.6875 

(0.1011)2 = (0.6875)10 

 
❖ Laws of Boolean algebra: 

1. Laws of Complementation (NOT Laws): 

The term complement means to invert. The symbol is an over bar. 

Law 1: 0 = 1 Law 2: 1 = 0 

Law 3: If 𝐴 = 0, then 𝐴 = 1 Law 4: If 𝐴 = 1, then 𝐴 = 0 

So, for a logic variable 𝑋, we have 𝑋 ∙ 𝑋 = 0 ⇒ 𝑋 + 𝑋 = 1 

2. OR Laws: 

The OR operation is represented by + sign. If 𝐴 and 𝐵 are inputs and 𝑌 is output, 

then OR operation is written as 

 
So, 0 + 0, 0 + 1, 1 + 0 and 1 + 1 

𝑌 = 𝐴 + 𝐵 

From these expressions, it is clear that if both the inputs are 0, then output will be 

zero and if any input or both inputs is 1, then the output will be 1. 

The four OR laws are 

Law 1: 𝐴 + 0 = 𝐴 Law 2: 𝐴 + 1 = 1 

Law 3: 𝐴 + 𝐴 = 𝐴 Law 4: 𝐴 + 𝐴 = 1 

3. AND Laws: 

The AND operation is represented by multiplication. 𝑌 = 𝐴 ∙ 𝐵 shows the AND laws. 

So, 0 ∙ 0 = 0, 0 ∙ 1 = 0, 

1 ∙ 0 = 0, 1 ∙ 1 = 1 
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So, it is clear that if any input is zero or both inputs are zero, then the output will be 

zero while if both the inputs are 1, the output will be one. 

The four AND laws are 

Law 1: 𝐴 ∙ 0 = 0 Law 2: 𝐴 ∙ 1 = 𝐴 

Law 3: 𝐴 ∙ 𝐴 = 𝐴 Law 4: 𝐴 ∙ 𝐴 = 0 

4. Commutative Laws: 

There are two commutative laws. These laws allow change in the position of 

variables in OR and AND expressions. 

These are 

Law 1: 𝐴 + 𝐵 = 𝐵 + 𝐴 

Law 2: 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴 

5. Associative Laws: 

There are two associative laws. These laws allow removal of bracket from logical 

expression and regrouping of variables. 

These are 

Law 1: 𝐴 + 𝐵 + 𝐶 = 𝐴 + 𝐵 + 𝐶 

Law 2: 𝐴 ∙ 𝐵 ∙ 𝐶 = 𝐴 ∙ 𝐵 ∙ 𝐶 

6. Distributive Laws: 

There are three distributive laws. These laws show that we can expand expressions 

by multiplying terms as in ordinary algebra. The distributive laws are 

Law 1: 𝐴 ∙ 𝐵 + 𝐶 = 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶 Law 2: 

𝐴 + 𝐵 ∙ 𝐶 = 𝐴 + 𝐵 ∙ 𝐴 + 𝐶 Law 3: 𝐴 + 𝐴 

∙ 𝐵 = 𝐴 + 𝐵 

7. Absorptive Laws: 

There are three absorptive laws. These are 

Law 1: 𝐴 + 𝐴 ∙ 𝐵 = 𝐴 

Law 2: 𝐴 ∙  𝐴 + 𝐵 = 𝐴 

Law 3: 𝐴 ∙ 𝐴 + 𝐵 = 𝐴 ∙ 𝐵 

 
❖  De Morgan’s laws: 

Theorem 1: The complement of the sum of two or more variables is equal to the 

product of the complement of the variables, i.e., for a two input gate we can write 

 𝑨 + 𝑩 = 𝑨 ∙ 𝑩  

De Morgan’s first theorem can be represented by fig. 
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Proof: 

We have four cases 

a. When 𝐴 = 0 and 𝐵 = 0 

L.H.S = 𝐴 + 𝐵 = 0 + 0 = 0 = 1 

R.H.S = 𝐴 ∙ 𝐵 = 0 ∙ 0 = 1 ∙ 1 = 1 Hence 

𝐴 + 𝐵 = 𝐴 ∙ 𝐵  

b. When 𝐴 = 0 and 𝐵 = 1 

L.H.S = 𝐴 + 𝐵 = 0 + 1 = 1 = 0 

R.H.S = 𝐴 ∙ 𝐵 = 0 ∙ 1 = 1 ∙ 0 = 0 Hence 

𝐴 + 𝐵 = 𝐴 ∙ 𝐵  

c. When 𝐴 = 1 and 𝐵 = 0 

L.H.S = 𝐴 + 𝐵 = 1 + 0 = 1 = 0 

R.H.S = 𝐴 ∙ 𝐵 = 1 ∙ 0 = 0 ∙ 1 = 0 Hence 

𝐴 + 𝐵 = 𝐴 ∙ 𝐵  

d. When 𝐴 = 1 and 𝐵 = 1 

L.H.S = 𝐴 + 𝐵 = 1 + 1 = 1 = 0 

R.H.S = 𝐴 ∙ 𝐵 = 1 ∙ 1 = 0 ∙ 0 = 0 Hence 

𝐴 + 𝐵 = 𝐴 ∙ 𝐵  

 
Theorem 2: The complement of the product of two or more variables is equal to the 

sum of the complements of the variables, i.e., 

 𝑨 ∙     𝑩 = 𝑨 + 𝑩  

De Morgan’s second theorem can be represented by fig. 
 

Proof: 

We have four cases 

a. When 𝐴 = 0 and 𝐵 = 0 

L.H.S = 𝐴 ∙ 𝐵 = 0 ∙ 0 = 0 = 1 

R.H.S = 𝐴 + 𝐵 = 0 + 0 = 1 + 1 = 1 

Hence 𝐴 ∙ 𝐵 = 𝐴 + 𝐵  

b. When 𝐴 = 0 and 𝐵 = 1 

L.H.S = 𝐴 ∙ 𝐵 = 0 ∙ 1 = 0 = 1 

R.H.S = 𝐴 + 𝐵 = 0 + 1 = 1 + 0 = 1 

Hence 𝐴 ∙ 𝐵 = 𝐴 + 𝐵  

c. When 𝐴 = 1 and 𝐵 = 0 
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L.H.S = 𝐴 ∙ 𝐵 = 1 ∙ 0 = 0 = 1 

R.H.S = 𝐴 + 𝐵 = 1 + 0 = 0 + 1 = 0 

Hence 𝐴 ∙ 𝐵 = 𝐴 + 𝐵  

d. When 𝐴 = 1 and 𝐵 = 1 

L.H.S = 𝐴 ∙ 𝐵 = 1 ∙ 1 = 1 = 0 

R.H.S = 𝐴 + 𝐵 = 1 + 1 = 0 + 0 = 0 

Hence 𝐴 ∙ 𝐵 = 𝐴 + 𝐵  

Hence, in every case left hand side of the expression is equal to the right hand side of 

the expression. Therefore, the theorem is proved. 

 
❖ Logic gates: 

Circuits which are used to process digital signals are called logic gates. Gate is a 

digital circuit with one or more inputs but only one output. 

Logic gates are of two types – Combinational and sequential. 

In combinational gates, the output at any instant depends upon the inputs at that instant. 

Here the previous input does not have any effect on the output. 

Examples: AND, OR, NOT, NAND, NOR and XOR are examples of combinational gates 

In sequential gates, the output depends upon the order or sequence in which the inputs are 

applied. 

Examples: Flip – flops, counters and Registers are examples of sequential gates. 

 
❖ Basic logic gates: 

The most basic logic gates are AND, OR and NOT gates. 

• OR gate: 

An OR gate has two or more input signals but only one output signal. It is called OR 

gate because the output is high if any or all of the inputs are high. The symbolic 

representation of a two input OR gate is shown in fig (a). Fig (b) shows its electrical 

equivalent which explains the logic behind any OR gate. 

OR gate is represented by equation 𝑌 = 𝐴 + 𝐵 and reads as Y equals A OR B and not 

as A plus B. 

Truth table: 

Input Output 

𝑨 𝑩 𝒀 = 𝑨 + 𝑩 

0 
0 

0 
1 

0 
1 
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1 
1 

0 
1 

1 
1 

 
The truth table of OR gate shows all the input output possibilities of a logic gate. 

(i) When both inputs (𝐴 and 𝐵) are zero (switches are open), the output 𝑌 is zero. 

(ii) When 𝐴 is in logic state 0 (switch 𝐴 is open) but 𝐵 is in logic state 1 (switch 𝐵 is 

closed), output 𝑌 is in logic state 1 (lamp is ON). 

(iii) When 𝐴 is in logic state 1 (switch 𝐴 is closed) but 𝐵 is in logic state 0 (switch 𝐵 

is open), output 𝑌 is in logic state 1 (lamp is ON). 

(iv) when both the switches are in logic state 1 (switches are closed) then the output 𝑌 

will be in logic state 1 (lamp is ON). 

• AND gate: 

An AND gate has two or more input signals but only one output signal. It is called 

AND gate because it provides output HIGH when all the inputs are HIGH. The 

symbolic representation of a two input AND gate is shown in fig. 
 

AND gate is represented by the equation 𝑌 = 𝐴 ∙ 𝐵 and reads as Y equals A AND B 

and not as A multiplied by B. 

Truth table: 

Input Output 

𝑨 𝑩 𝒀 = 𝑨 ∙ 𝑩 

0 

0 

1 
1 

0 

1 

0 
1 

0 

0 

0 
1 

 
The truth table of AND gate shows all the input output possibilities of a logic gate. 

(i) When both inputs (𝐴 and 𝐵) are zero (switches are open), the output 𝑌 is zero. 

(ii) When 𝐴 is in logic state 0 (switch 𝐴 is open) but 𝐵 is in logic state 1 (switch 𝐵 is 

closed), output 𝑌 is in logic state 0 (lamp is OFF). 

(iii) When 𝐴 is in logic state 1 (switch 𝐴 is closed) but 𝐵 is in logic state 0 (switch 𝐵 

is open), output 𝑌 is in logic state 0 (lamp is OFF). 

(iv) when both the switches are in logic state 1 (switches are closed) then the output 𝑌 

will be in logic state 1 (lamp is ON). 

• NOT gate: 

The NOT gate is a gate with only one input and one output. The NOT gate is also 

called an inverter because the output state is always opposite to that of input state. 

That is when the input is HIGH, the output is LOW and vice-versa. 
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NOT gate is represented by the equation 𝑌 = 𝐴 when 𝐴 is input 

The symbolic representation of NOT gate is shown in fig. 
 

Truth table: 

  

 
❖ NAND gate: 

NAND gate is a combination of AND gate and a NOT gate. The symbol of a NAND 

gate is shown in fig. Here the bubble on the output reminds us of the inversion after AND 

operation. 

NAND gate is represented by the equation 𝑌 = 𝐴 𝐵  
 

Truth table: 

Input Output 

A B 𝑌 = 𝐴 𝐵  
0 0 1 

0 1 1 

1 0 1 

1 1 0 

 
(i) When 𝐴 = 0, 𝐵 = 0 then 𝐴𝐵 = 0 and 𝐴 𝐵 = 1 (ii) 

When 𝐴 = 0, 𝐵 = 1 then 𝐴𝐵 = 0 and 𝐴 𝐵 = 1 (iii) 

When 𝐴 = 1, 𝐵 = 0 then 𝐴𝐵 = 0 and 𝐴 𝐵 = 1 (iv) 

When 𝐴 = 1, 𝐵 = 1 then 𝐴𝐵 = 1 and 𝐴 𝐵 = 0 

 
 
 
 

Input Output 

𝐴 𝑌 = 𝐴  

LOW HIGH 

HIGH LOW 

 

Input Output 

𝐴 𝑌 = 𝐴  

0 1 

1 0 
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❖ NAND gate as a universal gate: 

The NAND gate is called a universal gate since any logic gate (OR, AND, NOT) can 

be built by using NAND gate only. 

As NOT gate 

If two inputs of NAND gate are connected together, then we get a NOT gate as shown in 

fig. 
 

As AND gate 

The AND gate can be produced by connecting two NAND gates in series as shown in fig. 

As OR gate 

OR gate can be produced by three NAND gates as shown in fig. It is important to mention 

here that OR function may not be clear from this figure because De Morgan’s theorem is 

needed to prove that 𝐴 ∙ 𝐵 = 𝐴 + 𝐵 

❖ NOR gate: 

NOR gate is a combination of OR gate and a NOT gate. The symbol of NOR gate is 

shown in fig. Here the bubble in the output signifies that inversion takes place after OR 

operation. 

NOR gate is represented by the equation 𝑌 = 𝐴 + 𝐵  
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Truth table: 

Input Output 

A B 𝑌 = 𝐴 + 𝐵  
0 0 1 

0 1 0 

1 0 0 

1 1 0 

 
(i) When 𝐴 = 0, 𝐵 = 0 then 𝐴 + 𝐵 = 0 and 𝐴 + 𝐵 = 1 (ii) 

When 𝐴 = 0, 𝐵 = 1 then 𝐴 + 𝐵 = 1 and 𝐴 + 𝐵 = 0 (iii) 

When 𝐴 = 1, 𝐵 = 0 then 𝐴 + 𝐵 = 1 and 𝐴 + 𝐵 = 0 (iv) 

When 𝐴 = 1, 𝐵 = 1 then 𝐴 + 𝐵 = 1 and 𝐴 + 𝐵 = 0 

 
❖ NOR gate as universal gate: 

NOR gate is a universal gate because it can be used to perform the basic logic 

functions AND, OR, and NOT. 

As NOT gate 

When the inputs of NOR gate are tied together, the output is 𝐴 + 𝐴 as shown in fig. By De 

Morgan’s theorem this is equivalent to 𝐴 (i.e., 𝐴 + 𝐴 = 𝐴 ). This is the function of NOT 

gate. 

As AND gate 

AND gate can be made out of three NOR gates as shown in fig. Here two NOR gates are 

used to invert the inputs and third gate is used to combine the inverted inputs. 

The output 𝐴 ∙ 𝐵 is a function of AND gate. 

This can be proved with the help of De Morgan’s law.𝐴 + 𝐵 = 𝐴 ∙ 𝐵 = 𝐴 ∙ 𝐵 
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As OR gate 

This gate can be produced by connecting output of a NOR gate to a NOT gate. 

The output of NOR gate is 𝐴 + 𝐵 . This is inverted by NOT gate to give 𝑌 = 𝐴 + 𝐵. 

❖ Exclusive OR gate (XOR Gate): 

The EXCLUSIVE – OR gate, commonly written as EX-OR gate, is a two – input, 

one-output gate. The symbol of a XOR gate is shown in fig (a) & (b). The exclusive OR 

operation is denoted by ⨁. Hence the output is given by 

𝑌 = 𝐴⨁𝐵 = 𝐴𝐵  + 𝐴 𝐵 
 

The circuit of XOR gate is shown in fig. The bulb will glow when 

𝐴 = 1 or 𝐵 = 1 but not both. 

 
Truth table: 

Input Output 

A B 𝑌 = 𝐴⨁𝐵 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 
(i) When 𝐴 = 0, 𝐵 = 0, 𝑌 = 0 ∙ 1 + 1 ∙ 0 = 0 + 0 = 0 

(ii) When 𝐴 = 0, 𝐵 = 1, 𝑌 = 0 ∙ 0 + 1 ∙ 1 = 0 + 1 = 1 

(iii) When 𝐴 = 1, 𝐵 = 0, 𝑌 = 1 ∙ 1 + 0 ∙ 0 = 1 + 0 = 1 

(iv) When 𝐴 = 1, 𝐵 = 1, 𝑌 = 1 ∙ 0 + 0 ∙ 1 = 0 + 0 = 0 

It is clear from the truth table that output is 1 only when the inputs are different and 

output is 0 when the inputs are same. 
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❖ Half adder: 

A half-adder is an arithmetic circuit block that can be used to add two bits. It has two 

inputs that represent the two bits to be added and two outputs, with one producing the 

SUM output and the other producing the CARRY. 

The fig. shows the circuit of a half adder. It consists of an exclusive – OR gate and an 

AND gate. The output of the exclusive – OR gate is called the SUM, while the output of 

the AND gate is called the CARRY. 

Truth table: 

The truth table of a Half – adder is developed by writing the truth – table output of 

AND gate in Carry column and output of truth table of ex – OR gate in Sum column. 

Input Output 

𝑨 𝑩 CARRY 𝑸  SUM 𝑺  

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 
(i) When 𝐴 = 0 and 𝐵 = 0 (ii) When 𝐴 = 0 and 𝐵 = 1 

Carry  𝑄 = 𝐴 ∙ 𝐵 = 0 ∙ 0 = 0 Carry 𝑄 = 𝐴 ∙ 𝐵 = 0 ∙ 1 

Sum  𝑆 = 𝐴⨁𝐵 = 0 ∙ 0 = 0 Sum 𝑆 = 𝐴⨁𝐵 = 0⨂1 = 1 

 
(iii) When 𝐴 = 1 and 𝐵 = 0 (iv) When 𝐴 = 1 and 𝐵 = 1 

Carry  𝑄 = 𝐴 ∙ 𝐵 = 1 ∙ 0 = 0 Carry 𝑄 = 𝐴 ∙ 𝐵 = 1 ∙ 1 = 1 

Sum  𝑆 = 𝐴⨁𝐵 = 1⨁0 = 1 Sum 𝑆 = 𝐴⨁𝐵 = 1⨁1 

 
❖ Full adder: 

A full adder circuit is an arithmetic circuit block that can be used to add three bits to 

produce a SUM and a CARRY output. The full adder circuit overcomes the limitation of 

the half-adder, which can be used to add two bits only. The circuit and symbol of full 

adder is shown in fig. 
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Truth table: 

Input Output 

A B 
C 

 𝑸′  
Carry 
 𝑸  

Sum 
 𝑺  

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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❖ Important Questions: 

1. Explain different number systems. 

2. State the laws of Boolean algebra. 

3. State and prove De Morgan’s laws. 

4. Describe the basic logic gates with truth tables. 

5. Explain a NAND gate. Show that NAND gate is a universal gate. 

6. Explain a NOR gate. Show that NOR gate is a universal gate 

7. Describe XOR gate with truth table. 

8. Explain the construction and working of Half adder. 

9. Explain the construction and working of Full adder. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


